首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1915篇
  免费   199篇
  2021年   24篇
  2020年   20篇
  2019年   17篇
  2018年   20篇
  2017年   17篇
  2016年   35篇
  2015年   50篇
  2014年   45篇
  2013年   99篇
  2012年   91篇
  2011年   85篇
  2010年   55篇
  2009年   41篇
  2008年   65篇
  2007年   61篇
  2006年   64篇
  2005年   66篇
  2004年   56篇
  2003年   60篇
  2002年   68篇
  2001年   43篇
  2000年   50篇
  1999年   43篇
  1998年   31篇
  1997年   32篇
  1996年   29篇
  1995年   22篇
  1994年   29篇
  1993年   26篇
  1992年   51篇
  1991年   61篇
  1990年   45篇
  1989年   44篇
  1988年   41篇
  1987年   44篇
  1986年   43篇
  1985年   40篇
  1984年   44篇
  1983年   29篇
  1982年   20篇
  1980年   15篇
  1979年   18篇
  1978年   16篇
  1977年   22篇
  1976年   15篇
  1975年   22篇
  1974年   16篇
  1973年   15篇
  1972年   12篇
  1971年   17篇
排序方式: 共有2114条查询结果,搜索用时 687 毫秒
121.

Background and Aims

Understanding the synthesis of ascorbic acid (l-AsA) in green tissues in model species has advanced considerably; here we focus on its production and accumulation in fruit. In particular, our aim is to understand the links between organs which may be sources of l-AsA (leaves) and those which accumulate it (fruits). The work presented here tests the idea that changes in leaf and fruit number influence the accumulation of l-AsA. The aim was to understand the importance of leaf tissue in the production of l-AsA and to determine how this might provide routes for the manipulation of fruit tissue l-AsA.

Methods

The experiments used Ribes nigrum (blackcurrant), predominantly in field experiments, where the source–sink relationship was manipulated to alter potential leaf l-AsA production and fruit growth and accumulation of l-AsA. These manipulations included reductions in reproductive capacity, by raceme removal, and the availability of assimilates by leaf removal and branch phloem girdling. Natural variation in fruit growth and fruit abscission is also described as this influences subsequent experimental design and the interpretation of l-AsA data.

Key Results

Results show that fruit l-AsA concentration is conserved but total yield of l-AsA per plant is dependent on a number of innate factors many of which relate to raceme attributes. Leaf removal and phloem girdling reduced fruit weight, and a combination of both reduced fruit yields further. It appears that around 50 % of assimilates utilized for fruit growth came from apical leaves, while between 20 and 30 % came from raceme leaves, with the remainder from ‘storage’.

Conclusions

Despite being able to manipulate leaf area and therefore assimilate availability and stored carbohydrates, along with fruit yields, rarely were effects on fruit l-AsA concentration seen, indicating fruit l-AsA production in Ribes was not directly coupled to assimilate supply. There was no supporting evidence that l-AsA production occurred predominantly in green leaf tissue followed by its transfer to developing fruits. It is concluded that l-AsA production occurs predominantly in the fruit of Ribes nigrum.  相似文献   
122.
Hepatocellular carcinoma (HCC) is a difficult to treat cancer characterized by poor tumor immunity with only one approved systemic drug, sorafenib. If novel combination treatments are to be developed with immunological agents, the effects of sorafenib on tumor immunity are important to understand. In this study, we investigate the impact of sorafenib on the CD4+CD25? effector T cells (Teff) and CD4+CD25+ regulatory T cells (Tregs) from patients with HCC. We isolated Teff and Treg from peripheral mononuclear cells of HCC patients to determine immune reactivity by thymidine incorporation, ELISA and flow cytometry. Teff cultured alone or with Treg were supplemented with different concentrations of sorafenib. The effects of sorafenib on Teff responses were dose-dependent. Pharmacologic doses of sorafenib decreased Teff activation by down regulating CD25 surface expression. In contrast, sub-pharmacologic concentrations of sorafenib resulted in Teff activation. These low doses of sorafenib in the Teff cultures led to a significant increase in Teff proliferation, IL2 secretion and up-regulation of CD25 expression on the cell surface. In addition, low doses of sorafenib in the suppression Teff/Treg cocultures restored Teff responses by eliminating Treg suppression. The loss of Treg suppressive function correlated with an increase in IL2 and IL6 secretion. Our findings show that sub-pharmacologic doses of sorafenib impact subsets of T cells differently, selectively increasing Teff activation while blocking Treg function. In conclusion, this study describes novel immune activating properties of low doses of sorafenib by promoting immune responsiveness in patients with HCC.  相似文献   
123.
Summary

Two zoeae and the megalopa of the majid crab Macropodia parva were obtained from laboratory material. At 25±1°C and 35% salinity, the first crab appeared 12 days after hatching; survival to the first crab instar was 27%. The larval stages are described in detail and compared with those of the previously described species of the genus Macropodia. Zoeal characteristics of M. parva that differentiate it from other known Macropodia larvae are the naked telson furcae and the absence, in zoea II, of the exopodal setae on the basis of the maxillule.  相似文献   
124.
Chronobiological investigations into core temperature during and after exercise can involve ambulatory measurements of intestinal temperature during actual competitions, esophageal temperature measurements in laboratory simulations, or rectal temperature, which can be measured in both the field and laboratory. These sites have yet to be compared during both morning and afternoon exercise and subsequent recovery. At 08∶00 and 17∶00 h, seven recreationally active males exercised at 70% peak oxygen uptake for 30 min and then recovered passively for 30 min. During the experiment, esophageal, rectal, intestinal, and skin temperatures, plus sweat loss, heart rate, and ratings of perceived exertion (RPE), were monitored. We found that the diurnal variation in intestinal temperature responses (0.45±0.32°C; mean±SD) was significantly larger compared with rectal (0.33±0.24°C) and, particularly, esophageal temperature responses (0.21±0.20°C; p= 0.019). This reflected a greater difference of 0.25–0.40°C between the esophagus and the other two sites in the afternoon, compared to inter‐site differences of only 0.13–0.16°C in the morning. Diurnal variation was small for skin temperature, heart rate, sweat loss, and RPE responses during exercise (p>0.05). Our data suggest that the relative differences between intestinal, rectal, and esophageal temperature during exercise and subsequent recovery depend on time of day to the extent that inferences from studies on experimental and applied chronobiology will be affected.  相似文献   
125.
126.
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.  相似文献   
127.
Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.  相似文献   
128.
There is extensive evidence implicating the intestinal microbiota in inflammatory bowel disease [IBD], but no microbial agent has been identified as a sole causative agent. Bacteroidales are numerically dominant intestinal organisms that associate with the mucosal surface and have properties that both positively and negatively affect the host. To determine precise numbers and species of Bacteroidales adherent to the mucosal surface in IBD patients, we performed a comprehensive culture based analysis of intestinal biopsies from pediatric Crohn''s disease [CD], ulcerative colitis [UC], and control subjects. We obtained biopsies from 94 patients and used multiplex PCR or 16S rDNA sequencing of Bacteroidales isolates for species identification. Eighteen different Bacteroidales species were identified in the study group, with up to ten different species per biopsy, a number higher than demonstrated using 16S rRNA gene sequencing methods. Species diversity was decreased in IBD compared to controls and with increasingly inflamed tissue. There were significant differences in predominant Bacteroidales species between biopsies from the three groups and from inflamed and uninflamed sites. Parabacteroides distasonis significantly decreased in inflamed tissue. All 373 Bacteroidales isolates collected in this study grew with mucin as the only utilizable carbon source suggesting this is a non-pathogenic feature of this bacterial order. Bacteroides fragilis isolates with the enterotoxin gene [bft], previously associated with flares of colitis, were not found more often at inflamed colonic sites or within IBD subjects. B. fragilis isolates with the ability to synthesize the immunomodulatory polysaccharide A [PSA], previously shown to be protective in murine models of colitis, were not detected more often from healthy versus inflamed tissue.  相似文献   
129.
Norbormide [5‐(α‐hydroxy‐α‐2‐pyridylbenzyl)‐7‐(α‐2‐pyridylbenzylidene)‐5‐norbornene‐2,3‐dicarboximide] (NRB), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats but relatively harmless to other rodents and mammals. However, as an acute vasoactive, NRB has a rapid onset of action which makes it relatively unpalatable to rats, often leading to sublethal uptake and accompanying bait shyness. A series of NRB‐derived pro‐toxicants ( 3a  –  i , 4a  –  i , and 5a  –  i ) were prepared in an effort to ‘mask’ this acute response and improve both palatability and efficacy. Their synthesis, in vitro biological evaluation (vasocontractile response in rat vasculature, stability in selected rat media) and palatability/efficacy in Sprague–Dawley, wild Norway, and wild ship rats is described. Most notably, pro‐toxicant 3d was revealed to be free of all pre‐cleavage vasoconstrictory activity in rat caudal artery and was subsequently demonstrated to release NRB in the presence of rat blood, liver, and pancreatic enzymes. Moreover, it consistently displayed a high level of acceptance by rats in a two‐choice bait‐palatability and efficacy trial, with accompanying high mortality. On this evidence, fatty acid ester prodrugs would appear to offer a promising platform for the further development of NRB‐derived toxicants with enhanced palatability and efficacy profiles.  相似文献   
130.
Acute myeloid leukemia (AML) is a hierarchical hematopoietic malignancy originating from leukemic stem cells (LSCs). Autophagy is a lysosomal degradation pathway that is hypothesized to be important for the maintenance of AML as well as contribute to chemotherapy response. Here we employ a mouse model of AML expressing the fusion oncogene MLL-AF9 and explore the effects of Atg5 deletion, a key autophagy protein, on the malignant transformation and progression of AML. Consistent with a transient decrease in colony-forming potential in vitro, the in vivo deletion of Atg5 in MLL-AF9-transduced bone marrow cells during primary transplantation prolonged the survival of recipient mice, suggesting that autophagy has a role in MLL-AF9-driven leukemia initiation. In contrast, deletion of Atg5 in malignant AML cells during secondary transplantation did not influence the survival or chemotherapeutic response of leukemic mice. Interestingly, autophagy was found to be involved in the survival of differentiated myeloid cells originating from MLL-AF9-driven LSCs. Taken together, our data suggest that Atg5-dependent autophagy may contribute to the development but not chemotherapy sensitivity of murine AML induced by MLL-AF9.Acute myeloid leukemia (AML) is a clonal hematopoietic malignancy characterized by the uncontrolled proliferation of immature myeloid cells within the bone marrow (BM), eventually suppressing normal hematopoiesis.1 Recurrent chromosomal translocations frequently occur in AML, one of which involves the fusions of the KMT2A gene on chromosome 11 to a number of potential partners that are diagnosed as prognostically intermediate to poor.1 Among these fusions, the MLL-AF9 fusion oncogene, resulting from the t(9;11)(p22;q23) translocation, is well studied owing to its robust phenotype in various mouse models of AML.2, 3, 4 It has been previously reported that BM transplantation of hematopoietic progenitors expressing exogenous MLL-AF9 leads to rapid in vivo transformation and progression of AML in a syngeneic, immunocompetent mouse model and recapitulates the poor chemotherapy response of t(9;11)(p22;q23) fusion human AML.2, 5Autophagy is an evolutionarily conserved catabolic pathway by which cellular components are engulfed by double-membraned vesicles, called autophagosomes, and delivered to the lysosome for degradation and recycling. Autophagy is best characterized to be induced under stressful conditions, such as organelle damage or nutrient deprivation, and is followed by the elongation of the autophagosome membrane around its cargo. In Atg5-dependent autophagy, the conversion of LC3-I to LC3-II by lipidation is crucial for autophagosome membrane expansion, which is mediated by a series of ubiquitin-like conjugation systems.6 Within this pathway, the Atg5-Atg12-Atg16 complex acts as an E3-ubiquitin-ligase-like enzyme that specifically mediates the conjugation of LC3-I to phosphatidylethanolamine to form LC3-II, which inserts to the autophagosomal membrane. Autophagosome maturation is followed by fusion to lysosomes, at which time the inner compartment is degraded. The genetic ablation of Atg5 leads to a complete and highly selective inhibition of LC3-dependent autophagosome formation.6, 7Autophagy is known to be implicated in cancer as both a tumor promoter and a tumor suppressor.8 The genetic ablation of autophagy in mouse hematopoietic stem cells (HSCs) has been shown to result in severe impairments to HSC maintenance.9, 10, 11, 12, 13 Autophagy dysregulation has also been implicated in AML,12, 13, 14 suggesting that targeting autophagy could be promising for AML treatment. As an expanding arsenal of pharmacological autophagy modulators are being developed,15, 16 it has become increasingly important to specifically determine whether autophagy has an important role in AML using a genetic mouse model. Therefore, we sought to dissect the role of autophagy through the in vivo homozygous deletion of Atg5 in MLL-AF9-driven murine AML. We discover in this study that Atg5 deletion during primary transplantation prolongs the survival of animals, whereas Atg5 deletion after secondary transplantation has no effect on animal survival, suggesting a role for autophagy in the initiation, but not maintenance, of AML in our model. We additionally assessed the effect of autophagy in chemotherapeutic response and found that Atg5 deletion in our MLL-AF9 model had no effect on the in vivo response to cytarabine and doxorubicin combination therapy, suggesting that autophagy does not significantly contribute to chemotherapy response in this model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号