首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31335篇
  免费   2630篇
  国内免费   121篇
  34086篇
  2022年   217篇
  2021年   423篇
  2020年   289篇
  2019年   411篇
  2018年   492篇
  2017年   398篇
  2016年   640篇
  2015年   1029篇
  2014年   1134篇
  2013年   1554篇
  2012年   1736篇
  2011年   1585篇
  2010年   1173篇
  2009年   912篇
  2008年   1386篇
  2007年   1292篇
  2006年   1274篇
  2005年   1126篇
  2004年   1164篇
  2003年   1114篇
  2002年   1167篇
  2001年   1023篇
  2000年   946篇
  1999年   846篇
  1998年   391篇
  1997年   411篇
  1996年   327篇
  1995年   317篇
  1994年   248篇
  1993年   299篇
  1992年   569篇
  1991年   548篇
  1990年   518篇
  1989年   470篇
  1988年   373篇
  1987年   373篇
  1986年   352篇
  1985年   390篇
  1984年   374篇
  1983年   336篇
  1982年   241篇
  1981年   250篇
  1980年   225篇
  1979年   303篇
  1978年   274篇
  1977年   286篇
  1976年   273篇
  1975年   269篇
  1974年   282篇
  1973年   251篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Porin from bovine heart mitochondria contains probably two cysteines (Cys126 and Cys230 in human porin, Kayser, H., Kratzin, H. D., Thinnes, F. P., G?tz, H., Schmidt, W. E., Eckart, K. & Hilschmann, N. (1989) Biol. Chem. Hoppe-Seyler 370, 1265-1278). Reduced and oxidized forms of these cysteines were investigated in purified protein and in intact mitochondria using the agents dithioerythritol, cuprous(II) phenantroline, diamide and performic acid. Furthermore, intact mitochondria were labelled with the sulfhydryl-alkylating agents N-[14C]ethylmaleimide, eosin-5-maleimide and N-(1-pyrenyl)-maleimide. Affinity chromatography of bovine heart porin was performed with cysteine-specific material. The results can be summarized as follows: (1) Porin has one reduced and two oxidized forms of apparent molecular masses between 30 and 35 kDa. The native form of porin is the reduced 33 kDa form. The oxidized forms only appear after denaturation with SDS. (2) The 35-kDa reduced and the 33.5-kDa oxidized forms of porin show the same pore-forming properties after reconstitution of the protein into lipid bilayer membranes. (3) Labelling of cysteines by eosin-5-maleimide and N-(1-pyrenyl)-maleimide suggested their location at a boundary between the water-phase and the lipid-phase. Incubation of intact mitochondria with N-ethylmaleimide prior to eosin-5-maleimide and N-(1-pyrenyl)maleimide treatment resulted in the inhibition of the fluorescent labelling. Among the cysteines present in the primary structure, Cys126 is the most sensitive to N-ethylmaleimide binding. (4) Bovine heart mitochondrial porin covalently bound to Affi-Gel 501 (with a 1.75 nm long spacer), but not to Thiopropyl-Sepharose 6B (with a 0.51 nm spacer). This suggests that at least one of the cysteines is localized between 0.51 nm and 1.75 nm deep in the protein micelle.  相似文献   
992.
Evolutionary relationships among bacterial carbamoyltransferases   总被引:2,自引:0,他引:2  
An immunological approach was used for the study of ornithine carbamoyltransferase (OTCase) evolution in bacteria. Antisera were prepared against the anabolic and catabolic OTCases of Pseudomonas aeruginosa and Aeromonas formicans as well as against OTCase and putrescine carbamoyltransferases from Streptococcus faecalis; these antisera were then tested against the unpurified OTCases, either anabolic or catabolic, of 34 bacterial strains. Extensive cross-reactions were observed between the antisera to catabolic OTCases from P. aeruginosa, A. formicans and S. faecalis and the catabolic enzymes from other species or genera. These antisera cross-reacted also with the anabolic OTCases of strains of the Enterobacteriaceae but not with the anabolic OTCases of the same species or of other species or genera. The cross-reaction measured between the antisera against P. aeruginosa anabolic OTCase and the anabolic OTCases of other Pseudomonas were largely in agreement with the phylogenic subdivision of Pseudomonas proposed by N. J. Palleroni. The correlation was also significantly higher with the anabolic enzyme of an archaeobacterium, Methanobacterium thermoaceticum, than with the catabolic or anabolic OTCases from other genera in the eubacterial line. The antiserum raised against A. formicans anabolic OTCase was quite specific for its antigen and appeared to be raised against the heaviest of the various oligomeric structures of the enzyme.  相似文献   
993.
The cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS) Cdk2 after exposure to ionizing radiation (IR) enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as) phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.  相似文献   
994.
995.
We studied bone marrow CFU-GM growth behaviour of a 9-year-old male child with cyclic neutropenia. The cultures were performed on day 0 and on day 13 of cyclic oscillation, in order to study some correspondences between CFU-GM culture parameters and the phases of a whole cyclic oscillation "in vivo". We explored the CFU-GM growth under three different conditions of GM-CSA production: a) standard source of CSA; b) endogenous GM-CSA assay; c) GM-CSA-gamma-globulin assay. At both observation times the endogenous GM-CSA assay produced more aggregates than the baseline culture. The GM-CSA-gamma-globulin assay partly corrected the growth increase, produced by endogenous assay. At time 0, at the nadir of peripheral blood neutrophils, there was a balance between the number of aggregates, appeared early in culture and early degenerated, and those appeared late. From progenitor cells culture performed on day 13 of cycle, a week before the zenith of neutrophils in vivo, we obtained an increase in aggregates, which appeared late. The values of CFU-GM grown from the culture performed on day 13 reached higher levels than the ones performed on day 0. The CFU-GM growth behaviour shows that in our case with cyclic neutropenia there is no defect in progenitor cells, while on the contrary there is an increase in CSA production.  相似文献   
996.
The heterodimeric cytokine IL-23 consists of a private cytokine-like p19 subunit and a cytokine receptor-like subunit, p40, which is shared with IL-12. Previously reported IL-12p40-deficient mice have profound immune defects resulting from combined deficiency in both IL-12 and IL-23. To address the effects of specific IL-23 deficiency, we generated mice lacking p19 by gene targeting. These mice display no overt abnormalities but mount severely compromised T-dependent humoral immune responses. IL-23p19(-/-) mice produce strongly reduced levels of Ag-specific Igs of all isotypes, but mount normal T-independent B cell responses. In addition, delayed type hypersensitivity responses are strongly impaired in the absence of IL-23, indicating a defect at the level of memory T cells. T cells stimulated with IL-23-deficient APCs secrete significantly reduced amounts of the proinflammatory cytokine IL-17, and IL-23-deficient mice phenotypically resemble IL-17-deficient animals. Thus, IL-23 plays a critical role in T cell-dependent immune responses, and our data provide further support for the existence of an IL-23/IL-17 axis of communication between the adaptive and innate parts of the immune system.  相似文献   
997.
Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail‐anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40‐insert and the hydrophobic groove essential for tail‐anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40‐insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40‐insert is present in all domains of life, we suggest that its presence does not automatically predict a tail‐anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40‐insert but have not been demonstrated to function in tail‐anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.   相似文献   
998.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   
999.
Microbial sulfate reduction with acetate as carbon source and electron donor was investigated at salinity levels between 0.53 and 1.48%. The experiment was carried out in a 2.3-1 upflow anaerobic sludge blanket reactor inoculated with granular methanogenic sludge. A pH of 8.3, a temperature of 32 +/- 1 degrees C and a chemical oxygen demand (COD)/SO4(2-)-S ratio of 2 were maintained in the reactor throughout the experiment. Sulfate reduction and the composition of the dominant bacterial communities in the reactor were monitored. The results showed that a maximal conversion rate for SO4(2-)-S of 14 g l(-1) day(-1) and a conversion efficiency of more than 90% were obtained at a salinity level of 1.26-1.39%. A further increase in the salinity level led to reactor instability. Denaturant gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from total bacterial DNA extracted from the inoculum and reactor sludge showed that salinity level had an impact on the composition of the bacterial communities in the reactor. However, no clear relationship was found between reactor performance and the composition of the dominant bacterial communities in the reactor.  相似文献   
1000.
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号