首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8126篇
  免费   759篇
  国内免费   1篇
  8886篇
  2023年   34篇
  2022年   95篇
  2021年   161篇
  2020年   94篇
  2019年   119篇
  2018年   158篇
  2017年   121篇
  2016年   260篇
  2015年   438篇
  2014年   483篇
  2013年   525篇
  2012年   693篇
  2011年   745篇
  2010年   507篇
  2009年   388篇
  2008年   551篇
  2007年   530篇
  2006年   464篇
  2005年   439篇
  2004年   418篇
  2003年   360篇
  2002年   388篇
  2001年   83篇
  2000年   55篇
  1999年   78篇
  1998年   93篇
  1997年   66篇
  1996年   54篇
  1995年   30篇
  1994年   41篇
  1993年   31篇
  1992年   42篇
  1991年   34篇
  1990年   34篇
  1989年   29篇
  1988年   18篇
  1987年   23篇
  1986年   13篇
  1985年   20篇
  1984年   17篇
  1983年   16篇
  1981年   11篇
  1980年   9篇
  1978年   7篇
  1977年   8篇
  1974年   11篇
  1972年   13篇
  1969年   8篇
  1968年   6篇
  1967年   12篇
排序方式: 共有8886条查询结果,搜索用时 10 毫秒
101.
An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe2+ alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.  相似文献   
102.
Agarose hydrogels filled with cellulose nanowhiskers were strained in uniaxial stretching under different humidity conditions. The orientation of the cellulose whiskers was examined before and after testing with an X-ray laboratory source and monitored in situ during loading by synchrotron X-ray diffraction. The aim of this approach was to determine the process parameters for reorienting the cellulose nanowhiskers toward a preferential direction. Results show that a controlled drying of the hydrogel is essential to establish interactions between the matrix and the cellulose nanowhiskers which allow for a stress transfer during stretching and thereby promote their alignment. Rewetting of the sample after reorientation of the cellulose nanowhiskers circumvents a critical increase of stress. This improves the extensibility of the hydrogel and is accompanied by a further moderate alignment of the cellulose nanowhiskers. Following this protocol, cellulose nanowhiskers with an initial random distribution can be reoriented toward a preferential direction, creating anisotropic nanocomposites.  相似文献   
103.
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.  相似文献   
104.

Objective

Hypercholesterolemia is a major risk factor for cardiovascular disease (CVD), and diabetes mellitus and statin treatment affect cholesterol metabolism. The aim of the present study was to evaluate markers of cholesterol metabolism and determine their relationship with CVD in patients without diabetes mellitus who were not receiving statin treatment.

Methods

In addition to conventional CVD risk factors, plasma levels of campesterol and sitosterol (indicators of cholesterol absorption) and lathosterol (an indicator of cholesterol synthesis) were determined in 835 consecutive patients referred for coronary angiography. Coronary artery disease was evaluated by coronary angiograms, carotid atherosclerosis and peripheral vascular disease were assessed by Doppler ultrasound, and cerebrovascular accidents and transient ischemic attacks were identified by medical history.

Results

After excluding patients with known diabetes mellitus and those receiving statin treatment, 177 patients were included in the analysis. Compared to patients without CVDs (n = 111), patients with concomitant CVDs (n = 66) had a reduced lathosterol-to-cholesterol ratio (1.25 ± 0.61 vs. 1.38 ± 0.63, P < 0.05) and an increased campesterol-to-cholesterol ratio (1.81 ± 1.04 vs. 1.50 ± 0.69, P < 0.05), indicating that enhanced absorption and reduced synthesis of cholesterol is associated with CVD development. Logistic regression analysis including all established cardiovascular risk factors (age, sex, total cholesterol, arterial hypertension, body mass index and smoking) revealed that campesterol and the campesterol-to-cholesterol ratio were significant predictors of concomitant CVD in this patient population.

Conclusion

In patients without diabetes mellitus, markers of enhanced cholesterol absorption were a strong predictor for concomitant CVD.  相似文献   
105.
Fatty aldehydes are an important group of fragrance and flavor compounds that are found in different fruits and flowers. A biotechnological synthesis of fatty aldehydes based on Escherichia coli cells expressing an α-dioxygenase (αDOX) from Oryza sativa (rice) is presented. α-Dioxygenases are the initial enzymes of α-oxidation in plants and oxidize long and medium-chain C n fatty acids to 2-hydroperoxy fatty acids. The latter are converted to C n − 1 fatty aldehydes by spontaneous decarboxylation. Successful expression of αDOX in E. coli was proven by an in vitro luciferase assay. Using resting cells of this recombinant E. coli strain, conversion of different fatty acids to the respective fatty aldehydes shortened by one carbon atom was demonstrated. The usage of Triton X 100 improves the conversion rate up to 1 g aldehyde per liter per hour. Easy reuse of the cells was demonstrated by performing a second biotransformation without any loss of biocatalytic activity.  相似文献   
106.
It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining ≥5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.  相似文献   
107.
In this study, transgenic mice in which membrane-linked enhanced green fluorescent protein (mGFP) is expressed from the Thy1.2 promoter were used. In these mice, a subpopulation of small to medium sized DRG neurons double stained for IB4 but not for CGRP. Most of the peripheral terminals traversed the dermis and ramify within the epidermis and form superficial terminals. Within the spinal cord, these afferents terminated exclusively within the substantia gelatinosa (SG). A second fibre type in the skin also expressed mGFP, and formed club-shaped endings towards the bases of hairs. Injury to the sciatic nerve resulted in mGFP loss from the SG ipsilateral to the nerve injury, but also in the corresponding region contralaterally. Together, these findings reveal the specificity of connectivity of a defined subpopulation of DRG sensory neurons innervating the epidermis and this will facilitate analysis of their physiological functions.  相似文献   
108.
109.
110.
O-Mannosylation and N-glycosylation are essential protein modifications that are initiated in the endoplasmic reticulum (ER). Protein translocation across the ER membrane and N-glycosylation are highly coordinated processes that take place at the translocon-oligosaccharyltransferase (OST) complex. In analogy, it was assumed that protein O-mannosyltransferases (PMTs) also act at the translocon, however, in recent years it turned out that prolonged ER residence allows O-mannosylation of un-/misfolded proteins or slow folding intermediates by Pmt1-Pmt2 complexes. Here, we reinvestigate protein O-mannosylation in the context of protein translocation. We demonstrate the association of Pmt1-Pmt2 with the OST, the trimeric Sec61, and the tetrameric Sec63 complex in vivo by co-immunoprecipitation. The coordinated interplay between PMTs and OST in vivo is further shown by a comprehensive mass spectrometry-based analysis of N-glycosylation site occupancy in pmtΔ mutants. In addition, we established a microsomal translation/translocation/O-mannosylation system. Using the serine/threonine-rich cell wall protein Ccw5 as a model, we show that PMTs efficiently mannosylate proteins during their translocation into microsomes. This in vitro system will help to unravel mechanistic differences between co- and post-translocational O-mannosylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号