首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7962篇
  免费   709篇
  国内免费   1篇
  8672篇
  2023年   34篇
  2022年   92篇
  2021年   155篇
  2020年   93篇
  2019年   116篇
  2018年   157篇
  2017年   118篇
  2016年   257篇
  2015年   439篇
  2014年   483篇
  2013年   524篇
  2012年   692篇
  2011年   739篇
  2010年   508篇
  2009年   393篇
  2008年   543篇
  2007年   524篇
  2006年   460篇
  2005年   438篇
  2004年   414篇
  2003年   355篇
  2002年   381篇
  2001年   78篇
  2000年   53篇
  1999年   79篇
  1998年   91篇
  1997年   62篇
  1996年   48篇
  1995年   24篇
  1994年   29篇
  1993年   25篇
  1992年   23篇
  1991年   22篇
  1990年   18篇
  1989年   20篇
  1988年   18篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   12篇
  1983年   15篇
  1982年   6篇
  1981年   11篇
  1980年   8篇
  1978年   8篇
  1976年   8篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
  1967年   9篇
排序方式: 共有8672条查询结果,搜索用时 15 毫秒
131.
132.
Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding proteins. Our search for labeled peptides upon in-gel digest led to the discovery that the biotin moiety of the labeled peptides is oxidized. The in-gel analysis displayed kinase domains of two receptor-like kinases (RLKs) at a lower than expected molecular weight, indicating that these RLKs lost the extracellular domain, possibly as a result of receptor shedding. Analysis of modified peptides using a gel-free platform identified 242 different labeling sites for AcATP in the Arabidopsis proteome. Examination of each individual labeling site revealed a preference of labeling in ATP binding pockets for a broad diversity of ATP binding proteins. Of these, 24 labeled peptides were from a diverse range of protein kinases, including RLKs, mitogen-activated protein kinases, and calcium-dependent kinases. A significant portion of the labeling sites could not be assigned to known nucleotide binding sites. However, the fact that labeling could be competed with ATP indicates that these labeling sites might represent previously uncharacterized nucleotide binding sites. A plot of spectral counts against expression levels illustrates the high specificity of AcATP probes for protein kinases and known ATP binding proteins. This work introduces profiling of ATP binding activities of a large diversity of proteins in plant proteomes. The data have been deposited in ProteomeXchange with the identifier PXD000188.ATP binding and hydrolysis are the driving processes in all living organisms. Hundreds of cellular proteins are able to bind and hydrolyze ATP to unfold proteins, transport molecules over membranes, or phosphorylate small molecules or proteins. Proteins with very different structures are able to bind ATP. A large and important class of ATP binding proteins is that of the kinases, which transfer the gamma phosphate from ATP to substrates. Kinases, and particularly protein kinases, play pivotal roles in signaling and protein regulation.The genome of the model plant Arabidopsis thaliana encodes for over 1099 protein kinases and hundreds of other ATP binding proteins (1, 2). Protein kinases are involved in nearly all signaling cascades and regulate processes ranging from cell cycle to flowering and from immunity to germination. Many protein kinases in plants are receptor-like kinases (RLKs), often carrying extracellular leucine-rich repeats (LRRs). The RLK class contains at least 610 members (3), including famous examples such as receptors involved in development (e.g. BRI1, ER, CLV1) and immunity (e.g. FLS2, EFR). Other important classes are mitogen-activated protein (MAP) kinases (MPKs) (20 different members), MPK kinase kinase kinases (MAP3Ks) (60 different members (4)), and calcium-dependent protein kinases (CPKs) (34 different members (5)). Because of their diverse and important roles, protein kinases have been intensively studied in plant science. The current approach is to study protein kinases individually—a daunting task, considering the remaining hundreds of uncharacterized protein kinases. New approaches are necessary in order to study protein kinases and other ATP binding proteins globally rather than individually.ATP binding activities of protein kinases and other proteins can be detected globally by acyl-ATP (AcATP) probes (6, 7) (Fig. 1A). AcATP binds to the ATP pocket of ATP binding proteins and places the acyl group in close proximity to conserved lysine residues in the ATP binding pocket. The acyl phosphonate moiety serves as an electrophilic warhead that can be nucleophilically attacked by the amino group of the lysine, resulting in a covalent attachment of the acyl reporter of the AcATP probe on the lysine and a concomitant release of ATP. The reporter tag is usually a biotin to capture and identify the labeled proteins. Labeled proteins can be displayed on protein blots using streptavidin-HRP. However, because AcATP labels many ATP binding proteins and protein kinases are of relatively low abundance, mass spectrometry is more often used to identify and quantify labeling with AcATP probes. The analysis is preferably done using Xsite, a procedure that involves trypsination of the entire labeled proteome, followed by analysis of the biotinylated peptides rather than the biotinylated proteins (8). This “KiNativ ” approach provides enough depth and resolving power to monitor ∼160 protein kinases in a crude mammalian proteome (7). Of the 518 human protein kinases (9), 394 (76%) have been detected via AcATP labeling (6).Open in a separate windowFig. 1.Structure and mechanism of labeling with BHAcATP. A, BHAcATP contains ATP, an acyl phosphate reactive group, and a biotin tag. When BHAcATP binds to the ATP binding pocket of a protein, the amino group of the nearby lysine reacts with the carbonyl carbon, which results in the covalent binding of the biotin tag to the protein while ATP is released. B, typical BHAcATP labeling profile of Arabidopsis leaf proteome. Arabidopsis leaf extracts were labeled with BHAcATP and the biotinylated proteins were detected on protein blots using streptavidin-HRP. Coomassie Brilliant Blue staining indicates equal loading. Asterisks indicate endogenously biotinylated proteins MCCA and BCCP. White, black, and gray arrowheads indicate bands containing ATBP+RBCL, PGK1, and a mix of ATP binding proteins, respectively. Abbreviations: MCCA, 3-methylcrotonyl-CoA carboxylase; BCCP, biotin carboxyl carrier protein; ATPB, chloroplastic ATPase; RBCL, ribulose-bisphosphate carboxylase; PGK1, phosphoglycerate kinase-1.KiNativ has mostly been used to validate targets of human drugs that target protein kinases using competitive labeling experiments. This approach has been used to identify selective inhibitors of, for example, Parkinson''s disease protein kinase LRRK2 (10), the BMK1 and JNK MAP kinases (11, 12), and the mTOR kinase (13). Importantly, the correlation of the biological activity of protein-kinase-inhibiting drugs with inhibitor affinity detected using KiNativ is better than that achieved when affinities are determined by assays using heterologously expressed protein kinases (7). This improved correlation illustrates that assays in the native environment provide a more realistic measure of protein kinase function.In addition to characterizing inhibitors selectively, AcATP probes can also display differential ATP binding activities of protein kinases. For example, labeling with AcATP probes during infection with dengue virus displayed a 2- to 8-fold activation of a DNA-dependent protein kinase (14) Similarly, AcATP labeling revealed an unexpected Raf kinase activation in extracts upon protein kinase inhibitor treatment (7). In conclusion, profiling with AcATP probes is a powerful approach for monitoring protein kinases and offers unprecedented opportunities to identify selective protein kinase inhibitors and discover protein kinases with differential ATP binding activities.In this work, we introduce AcATP profiling of plant proteomes. In addition to the analysis of labeled peptides, we characterized labeling using gel-based approaches and discovered that biotin is often oxidized in this procedure. We also performed an in-depth analysis of labeling sites in proteins other than protein kinases, which had not been done before. We discuss labeling outside known nucleotide binding pockets and investigate the correlation of labeling sites with protein abundance. We describe 63 labeling sites of known nucleotide binding pockets, of which 24 represent a remarkable diversity of protein kinases, including several LRR-RLKs. This work launches a new approach to study ATP binding proteins in plant science.  相似文献   
133.
Hydrogen cyanide (HCN) in breath has been suggested as a diagnostic tool for cyanide poisoning and for cyanide-producing bacterial infections. To distinguish elevated levels of breath HCN, baseline data are needed. Background levels of HCN were measured in mixed exhaled air from 40 healthy subjects (26 men, 14 women, age 21–61 years; detection limit: 1.5?ppb; median: 4.4?ppb; range <1.5–14?ppb) by near-infrared cavity ring down spectroscopy (CRDS). No correlation was observed with smoking habits, recent meals or age. However, female subjects had slightly higher breath levels of HCN than male subjects. CRDS has not previously been used for this purpose.  相似文献   
134.
Event traces are helpful in understanding the performance behavior of parallel applications since they allow the in-depth analysis of communication and synchronization patterns. However, the absence of synchronized clocks on most cluster systems may render the analysis ineffective because inaccurate relative event timings may misrepresent the logical event order and lead to errors when quantifying the impact of certain behaviors or confuse the users of time-line visualization tools by showing messages flowing backward in time. In our earlier work, we have developed a scalable algorithm called the controlled logical clock that eliminates inconsistent inter-process timings postmortem in traces of pure MPI applications, potentially running on large processor configurations. In this paper, we first demonstrate that our algorithm also proves beneficial in computational grids, where a single application is executed using the combined computational power of several geographically dispersed clusters. Second, we present an extended version of the algorithm that—in addition to message-passing event semantics—also preserves and restores shared-memory event semantics, enabling the correction of traces from hybrid applications.  相似文献   
135.
Mobility is an important factor influencing the range and persistence of local populations. However, mobility is very difficult to measure empirically and thus is poorly known in most taxa. Since ecological characteristics have been suggested as good estimators of mobility, we here explore the association between ecological characteristics and mobility. We surveyed night-active moths on a Swedish island, situated 16 km from the mainland, and compared ecological characteristics of the non-resident moths found on the island with those of a species pool of assumed potential vagrants from the neighbouring mainland. Species associated with high mobility were characterised by a large range, a high population density, an activity period during warm temperatures and by being habitat generalists or preferring open habitats. The generally assumed view of poly- and oligophagous species being more mobile than monophagous species was obscured by the effect of population density. Poly- and oligophagous species had higher population densities than did monophagous species, which probably explain their higher mobility found in this study. Our result highlights the need to consider the influence of ecological characteristics on mobility. This in turn will have implications for an increased understanding of distribution patterns, population persistence and how to prioritise conservation actions, especially since habitats and climate are under dramatic changes. In taxa where data on mobility are poor, ecological characteristics can be used as a proxy for mobility.  相似文献   
136.
137.
138.
139.
Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.  相似文献   
140.
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号