首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8115篇
  免费   733篇
  国内免费   1篇
  8849篇
  2023年   37篇
  2022年   92篇
  2021年   158篇
  2020年   97篇
  2019年   119篇
  2018年   158篇
  2017年   121篇
  2016年   263篇
  2015年   441篇
  2014年   481篇
  2013年   530篇
  2012年   699篇
  2011年   752篇
  2010年   510篇
  2009年   395篇
  2008年   547篇
  2007年   522篇
  2006年   465篇
  2005年   442篇
  2004年   418篇
  2003年   354篇
  2002年   389篇
  2001年   81篇
  2000年   54篇
  1999年   83篇
  1998年   90篇
  1997年   66篇
  1996年   53篇
  1995年   24篇
  1994年   33篇
  1993年   30篇
  1992年   29篇
  1991年   30篇
  1990年   20篇
  1989年   24篇
  1988年   20篇
  1987年   13篇
  1986年   12篇
  1985年   13篇
  1984年   14篇
  1983年   10篇
  1981年   11篇
  1980年   9篇
  1979年   9篇
  1977年   12篇
  1976年   12篇
  1974年   12篇
  1973年   11篇
  1968年   9篇
  1967年   7篇
排序方式: 共有8849条查询结果,搜索用时 15 毫秒
981.

Background

The objectives of the study were to generate normative data for the RS-11 for different age groups for men and women and to further investigate the construct validity and factor structure in the general population.

Methods

Nationally representative face-to face household surveys were conducted in Germany in 2006 (n = 5,036).

Results

Normative data for the RS-11 were generated for men and women (53.7% female) and different age levels (mean age (SD) of 48.4 (18.0) years). Men had significantly higher mean scores compared with women (60.0 [SD = 10.2] vs. 59.3 [SD = 11.0]). Results of CFA supported a one-factor model of resilience. Self-esteem (standardized β = .50) and life satisfaction (standardized β =.20) were associated with resilience.

Conclusions

The normative data provide a framework for the interpretation and comparisons of resilience with other populations. Results demonstrate a special importance of self-esteem in the understanding of resilience.  相似文献   
982.
Until recently, adenovirus (Ad)-mediated gene therapy was almost exclusively based on human Ad type 5 (Ad5). Preexisting immunity and the limited, coxsackievirus and adenovirus receptor-dependent tropism of Ad5 stimulated attempts to exploit the natural diversity in tropism of the other 50 known human Ad serotypes. Aiming in particular at immunotherapy and vaccination, we have screened representative serotypes from different Ad species for their ability to infect dendritic cells. Ad19a, an Ad from species D, was selected for development as a new vector for vaccination and cancer gene therapy. To clone and manipulate its genome, we have developed a novel methodology, coined "exposon mutagenesis," that allows the rapid and precise introduction of virtually any genetic alteration (deletions, point mutations, or insertions) into recombinant Ad bacterial artificial chromosomes. The versatility of the system was exemplified by deleting the E3 region of Ad19a, by specifically knocking out expression of a species-specific E3 gene, E3/49K, and by reinserting E3/49K into an E3 null Ad19a mutant. The technology requires only limited sequence information and is applicable to other Ad species. Therefore, it should be extremely valuable for the analysis of gene functions from any Ad species. In addition, a basic, replication-defective E1- and E3-deleted Ad19a vector expressing GFP (Ad19aGFP) was generated. This new vector based on species D Ads exhibits a very promising tropism for lymphoid and muscle cells and shows great potential as an alternative vector for transduction of cell types that are resistant to or only poorly transduced by conventional Ad5-based vectors.  相似文献   
983.
984.
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.Rational and quantitative assessment of metabolic changes in response to genetic modification (GM) is an open question and in need of innovative solutions. Nontargeted metabolite profiling can detect thousands of compounds, but it is not easy to understand the significance of the changed metabolites in the biochemical and biological context of the organism. To better assess the changes in metabolites from nontargeted metabolomics studies, it is important to examine the changed metabolites in the context of the genome-scale metabolic network of the organism.Metabolomics is a technique that aims to quantify all the metabolites in a biological system (Nikolau and Wurtele, 2007; Nicholson and Lindon, 2008; Roessner and Bowne, 2009). It has been used widely in studies ranging from disease diagnosis (Holmes et al., 2008; DeBerardinis and Thompson, 2012) and drug discovery (Cascante et al., 2002; Kell, 2006) to metabolic reconstruction (Feist et al., 2009; Kim et al., 2012) and metabolic engineering (Keasling, 2010; Lee et al., 2011). Metabolomic studies have demonstrated the possibility of identifying gene functions from changes in the relative concentrations of metabolites (metabotypes or metabolic signatures; Ebbels et al., 2004) in various species including yeast (Saccharomyces cerevisiae; Raamsdonk et al., 2001; Allen et al., 2003), Arabidopsis (Arabidopsis thaliana; Brotman et al., 2011), tomato (Solanum lycopersicum; Schauer et al., 2006), and maize (Zea mays; Riedelsheimer et al., 2012). Metabolomics has also been used to better understand how plants interact with their environments (Field and Lake, 2011), including their responses to biotic and abiotic stresses (Dixon et al., 2006; Arbona et al., 2013), and to predict important agronomic traits (Riedelsheimer et al., 2012). Metabolite profiling has been performed on many plant species, including angiosperms such as Arabidopsis, poplar (Populus trichocarpa), and Catharanthus roseus (Sumner et al., 2003; Rischer et al., 2006), basal land plants such as Selaginella moellendorffii and Physcomitrella patens (Erxleben et al., 2012; Yobi et al., 2012), and Chlamydomonas reinhardtii (Fernie et al., 2012; Davis et al., 2013). With the availability of whole genome sequences of various species, metabolomics has the potential to become a useful tool for elucidating the functions of genes using large-scale systematic analyses (Fiehn et al., 2000; Saito and Matsuda, 2010; Hur et al., 2013).Although metabolomics data have the potential for identifying the roles of genes that are associated with metabolic phenotypes, the biochemical mechanisms that link functions of genes with metabolic phenotypes are still poorly characterized. For example, we do not yet know the principles behind how perturbing the expression of a single gene changes the metabolic system as a whole. Large-scale metabolomics data have provided useful resources for linking phenotypes to genotypes (Fiehn et al., 2000; Roessner et al., 2001; Tikunov et al., 2005; Schauer et al., 2006; Lu et al., 2011; Fukushima et al., 2014). For example, Lu et al. (2011) compared morphological and metabolic phenotypes from more than 5,000 Arabidopsis chloroplast mutants using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS). Fukushima et al. (2014) generated metabolite profiles from various characterized and uncharacterized mutant plants and clustered the mutants with similar metabolic phenotypes by conducting multidimensional scaling with quantified metabolic phenotypes. Nonetheless, representation and analysis of such a large amount of data remains a challenge for scientific discovery (Lu et al., 2011). In addition, these studies do not examine the topological and functional characteristics of metabolic changes in the context of a genome-scale metabolic network. To understand the relationship between genotype and metabolic phenotype, we need to investigate the metabolic changes caused by perturbing the expression of a gene in a genome-scale metabolic network perspective, because metabolic pathways are not independent biochemical factories but are components of a complex network (Berg et al., 2002; Merico et al., 2009).Much progress has been made in the last 2 decades to represent metabolism at a genome scale (Terzer et al., 2009). The advances in genome sequencing and emerging fields such as biocuration and bioinformatics enabled the representation of genome-scale metabolic network reconstructions for model organisms (Bassel et al., 2012). Genome-scale metabolic models have been built and applied broadly from microbes to plants. The first step toward modeling a genome-scale metabolism in a plant species started with developing a genome-scale metabolic pathway database for Arabidopsis (AraCyc; Mueller et al., 2003) from reference pathway databases (Kanehisa and Goto, 2000; Karp et al., 2002; Zhang et al., 2010). Genome-scale metabolic pathway databases have been built for several plant species (Mueller et al., 2005; Zhang et al., 2005, 2010; Urbanczyk-Wochniak and Sumner, 2007; May et al., 2009; Dharmawardhana et al., 2013; Monaco et al., 2013, 2014; Van Moerkercke et al., 2013; Chae et al., 2014; Jung et al., 2014). Efforts have been made to develop predictive genome-scale metabolic models using enzyme kinetics and stoichiometric flux-balance approaches (Sweetlove et al., 2008). de Oliveira Dal’Molin et al. (2010) developed a genome-scale metabolic model for Arabidopsis and successfully validated the model by predicting the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. Other genome-scale models have been developed for Arabidopsis (Poolman et al., 2009; Radrich et al., 2010; Mintz-Oron et al., 2012), C. reinhardtii (Chang et al., 2011; Dal’Molin et al., 2011), maize (Dal’Molin et al., 2010; Saha et al., 2011), sorghum (Sorghum bicolor; Dal’Molin et al., 2010), and sugarcane (Saccharum officinarum; Dal’Molin et al., 2010). These predictive models have the potential to be applied broadly in fields such as metabolic engineering, drug target discovery, identification of gene function, study of evolutionary processes, risk assessment of genetically modified crops, and interpretations of mutant phenotypes (Feist and Palsson, 2008; Ricroch et al., 2011).Here, we interrogate the metabotypes caused by 136 single gene perturbations of Arabidopsis by analyzing the relative concentration changes of 1,348 chemically identified metabolites using a reconstructed genome-scale metabolic network. We examine the characteristics of the changed metabolites (the metabolites whose relative concentrations were significantly different in mutants relative to the wild type) in the metabolic network to uncover biological and topological consequences of the perturbed genes.  相似文献   
985.
Nearly all decapod crustaceans found in Antarctic waters south of the Antarctic Convergence are caridean shrimps (Natantia) while the group of Reptantia is largely absent in this area. Progress in the development of a physiological hypothesis is reported, which explains this distribution pattern based on differences in the regulation of magnesium levels in the haemolymph ([Mg2+]HL) and on the Mg2+ dependence of threshold temperatures below which cold-induced failure of cardiac and ventilatory performance occurs. Previous studies had shown that an increase in oxygen consumption and activity levels in the cold can be induced by experimental reduction of [Mg2+]HL in different reptant decapod species. In the present study, we tested the potential of these experimental findings for predicting the effect of low [Mg2+]HL in nature, and investigated temperature-induced changes in oxygen consumption in two species with low but different [Mg2+]HL from southern Chile, Halicarcinus planatus and Acanthocyclus albatrossis ([Mg2+]HL=10.7 and 21.6 mmol l-1, respectively). In accordance with previous findings, low [Mg2+]HL levels were associated with a reduction of thermal sensitivity and a higher metabolic rate in the cold. A model is developed which describes how [Mg2+]HL reduction caused a threshold temperature (pejus temperature, Tp) to fall, which characterises the onset of cold-induced failure in oxygen supply to tissues. This threshold temperature is interpreted, not only to indicate the limits of cold tolerance, but also of geographical distribution. Tp is shifted towards lower temperatures in Natantia, which are efficient [Mg2+]HL regulators. In contrast, Reptantia, which are poor [Mg2+]HL regulators, appear unable to colonise the permanently cold water of the Antarctic due to insufficient capacity of cardiac performance and, therefore, largely reduced scope for activity at high [Mg2+]HL.  相似文献   
986.
987.
The larch forests at the southern limit of the Siberian boreal forest in Central Asia have repeatedly experienced strong recent growth declines attributed to decreasing summer precipitation in the course of climate warming. Here, we present evidence from the southernmost Larix sibirica forests in eastern Kazakhstan that these declines are primarily caused by a decrease in effective moisture due to increasing summer temperatures, despite constant annual, and summer precipitation. Tree-ring chronologies (>800 trees) showed a reduction by 50–80% in mean ring width and an increase in the frequency of missing rings since the 1970s. Climate-response analysis revealed a stronger (negative) effect of summer temperature (in particular of the previous year’s June and July temperature) on radial growth than summer precipitation (positive effect). It is assumed that a rise in the atmospheric vapor pressure deficit, which typically increases with temperature, is negatively affecting tree water status and radial growth, either directly or indirectly through reduced soil moisture. Larch rejuvenation ceased in the 1950s, which is partly explained by increasing topsoil desiccation in a warmer climate and a high drought susceptibility of larch germination, as was demonstrated by a germination experiment with variable soil moisture levels. The lack of regeneration and the reduced annual stem increment suggest that sustainable forest management aiming at timber harvesting is no longer feasible in these southern boreal forests. Progressive climate warming is likely to cause a future northward shift of the southern limit of the boreal forest.  相似文献   
988.
Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.  相似文献   
989.
The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.  相似文献   
990.
The p19(INK4d) protein consists of five ankyrin repeats (ANK) and controls the human cell cycle by inhibiting the cyclin D-dependent kinases (CDK) 4 and 6. We investigated the folding of p19(INK4d) by urea-induced unfolding transitions, kinetic analyses of unfolding and refolding, including double-mixing experiments and a special assay for folding intermediates. Folding is a sequential two-step reaction via a hyperfluorescent on-pathway intermediate. This intermediate is present under all conditions, during unfolding, refolding and at equilibrium. The folding mechanism was confirmed by a quantitative global fit of a consistent set of equilibrium and kinetic data revealing the thermodynamics and intrinsic folding rates of the different states. Surprisingly, the N<-->I transition is much faster compared to the I<-->U transition. The urea-dependence of the intrinsic folding rates causes population of the intermediate at equilibrium close to the transition midpoint. NMR detected hydrogen/deuterium exchange and the analysis of truncated variants showed that the C-terminal repeats ANK3-5 are already folded in the on-pathway intermediate, whereas the N-terminal repeats 1 and 2 are not folded. We suggest that during refolding, repeats ANK3-ANK5 first form the scaffold for the subsequent assembly of repeats ANK1 and ANK2. The binding function of p19(INK4d) resides in the latter repeats. We propose that the graded stability and the facile unfolding of repeats 1 and 2 is a prerequisite for the down-regulation of the inhibitory activity of p19(INK4d) during the cell-cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号