首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7853篇
  免费   704篇
  国内免费   1篇
  2023年   28篇
  2022年   59篇
  2021年   156篇
  2020年   94篇
  2019年   119篇
  2018年   159篇
  2017年   123篇
  2016年   260篇
  2015年   437篇
  2014年   475篇
  2013年   522篇
  2012年   686篇
  2011年   738篇
  2010年   501篇
  2009年   380篇
  2008年   546篇
  2007年   516篇
  2006年   462篇
  2005年   438篇
  2004年   416篇
  2003年   354篇
  2002年   382篇
  2001年   73篇
  2000年   45篇
  1999年   75篇
  1998年   91篇
  1997年   60篇
  1996年   49篇
  1995年   25篇
  1994年   29篇
  1993年   25篇
  1992年   28篇
  1991年   23篇
  1990年   15篇
  1989年   22篇
  1988年   17篇
  1987年   7篇
  1985年   10篇
  1984年   12篇
  1983年   10篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1968年   4篇
  1967年   7篇
排序方式: 共有8558条查询结果,搜索用时 62 毫秒
161.
Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.  相似文献   
162.
HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env''s fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag''s ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells.  相似文献   
163.
164.
The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.  相似文献   
165.
166.
Soil microorganisms play a pivotal role in soil organic matter (SOM) turn-over and their diversity is discussed as a key to the function of soil ecosystems. However, the extent to which SOM dynamics may be linked to changes in soil microbial diversity remains largely unknown. We characterized SOM degradation along a microbial diversity gradient in a two month incubation experiment under controlled laboratory conditions. A microbial diversity gradient was created by diluting soil suspension of a silty grassland soil. Microcosms containing the same sterilized soil were re-inoculated with one of the created microbial diversities, and were amended with 13C labeled wheat in order to assess whether SOM decomposition is linked to soil microbial diversity or not. Structural composition of wheat was assessed by solid-state 13C nuclear magnetic resonance, sugar and lignin content was quantified and labeled wheat contribution was determined by 13C compound specific analyses. Results showed decreased wheat O-alkyl-C with increasing microbial diversity. Total non-cellulosic sugar-C derived from wheat was not significantly influenced by microbial diversity. Carbon from wheat sugars (arabinose-C and xylose-C), however, was highest when microbial diversity was low, indicating reduced wheat sugar decomposition at low microbial diversity. Xylose-C was significantly correlated with the Shannon diversity index of the bacterial community. Soil lignin-C decreased irrespective of microbial diversity. At low microbial diversity the oxidation state of vanillyl–lignin units was significantly reduced. We conclude that microbial diversity alters bulk chemical structure, the decomposition of plant litter sugars and influences the microbial oxidation of total vanillyl–lignins, thus changing SOM composition.  相似文献   
167.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   
168.
Plant reproductive success is usually positively related to conspecific floral density, but neutral or negative effects of floral density on reproduction have also been reported. Differences in the relationship between reproduction and floral density largely originate from a trade‐off between increasing attractiveness versus increasing competition for pollinators at high floral densities. Although floral densities strongly vary in the understory of tropical forests, for instance, due to variation in light availability, little is known about the density dependence of reproduction in tropical understory plants. We used path analyses to disentangle direct and indirect effects of canopy openness and floral density on fruit set and analyzed the relationship between pollen load and floral density for two Neotropical understory plants, Heliconia metallica and Besleria melancholica. In both species, fruit set was not directly related to canopy openness, but decreased with increasing floral density. In H. metallica, canopy openness had an indirect negative effect on reproduction mediated by its effects on floral density. Effects of floral density on pollen loads were species‐specific. In B. melancholica, pollen loads linearly decreased with increasing floral density, indicating competition for pollinators at high densities. In H. metallica, pollen loads were reduced at both low and high densities, indicating an interplay of facilitative and competitive effects of floral density on pollen deposition. In contrast to other studies, we found negative density dependence of reproduction in both understory species. Negative effects of floral density on reproduction appear to be related to pollinator‐mediated effects on reproduction rather than to variation in abiotic conditions.  相似文献   
169.
Methyl jasmonate (MeJA)‐mediated defense in conventional cotton, Gossypium hirsutum L. (Malvaceae), against cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was investigated with respect to the activities of the detoxification enzymes acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S‐transferases (GST) in pupae as well as the performance of larvae. The results suggested that exogenous application of MeJA to cotton leaves depressed the activities of AChE, CarE, and GST of cotton bollworm pupae. Both the absolute and protein‐specific AChE activities of pupae were depressed at all three MeJA concentrations applied as compared with a control, and the effects of 0.4 mM MeJA were significantly higher than those of 0.1 and 0.2 mM. A marked reduction in absolute CarE activity was observed at the 0.4 mM MeJA treatment, whereas the protein‐specific activity was increased by 0.2 and 0.4 mM. Absolute GST activity was significantly depressed only by the 0.4 mM MeJA treatment, whereas protein‐specific GST activity was not markedly affected by MeJA. Protein content of pupae was reduced by 0.4 mM MeJA‐induced defense in cotton leaves. The development time of larvae was protracted and pupal weight was reduced by 0.1 and 0.4 mM MeJA‐treated cotton leaves. Larval weight gain was inhibited significantly on 0.2 and 0.4 mM MeJA‐treated cotton leaves. The results suggested that MeJA‐induced plant defense may have adverse effects on H. armigera. In addition to the inhibition of growth and development, induced defense may also impair the insect's ability to detoxify toxic plant secondary metabolites.  相似文献   
170.
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RIs) was negatively correlated with the strength of natural selection (RIm), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号