首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7804篇
  免费   689篇
  国内免费   1篇
  8494篇
  2024年   5篇
  2023年   34篇
  2022年   89篇
  2021年   155篇
  2020年   92篇
  2019年   116篇
  2018年   156篇
  2017年   118篇
  2016年   255篇
  2015年   434篇
  2014年   472篇
  2013年   518篇
  2012年   682篇
  2011年   733篇
  2010年   500篇
  2009年   379篇
  2008年   538篇
  2007年   515篇
  2006年   454篇
  2005年   433篇
  2004年   411篇
  2003年   350篇
  2002年   379篇
  2001年   73篇
  2000年   44篇
  1999年   72篇
  1998年   89篇
  1997年   60篇
  1996年   48篇
  1995年   22篇
  1994年   29篇
  1993年   25篇
  1992年   23篇
  1991年   22篇
  1990年   14篇
  1989年   17篇
  1988年   15篇
  1985年   8篇
  1984年   12篇
  1983年   10篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1968年   4篇
  1967年   7篇
排序方式: 共有8494条查询结果,搜索用时 15 毫秒
161.
Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis.  相似文献   
162.
163.
Abstract The biogenesis of most eukaryotic kinds of RNA requires nuclear export, which is mediated by a variety of specific nuclear transport receptors. The nuclear export receptors Exportin-t (Exp-t) and Exportin 5 (Exp5), and their homologues, are involved in the export of transfer RNA to the cytoplasm. Exp5 is further involved in additional nucleocytoplasmic transport pathways, which include nuclear export of microRNA precursors (pre-miRNAs) and pre-60S ribosomal subunits. Inactivation of Exp5 results in nuclear accumulation of pre-miRNAs and perturbation of gene expression, and its mutation was recently found in malignant diseases. Here, we compare the cellular function of Exp5 and Exp-t with focus on Exp5 substrates and its role in diseases.  相似文献   
164.
Resistance against protozoan grazers is a crucial factor that is important for the survival of many bacteria in their natural environment. However, the basis of resistance to protozoans and how resistance factors are regulated is poorly understood. In part, resistance may be due to biofilm formation, which is known to protect bacteria from environmental stress conditions. The ubiquitous organism Serratia marcescens uses quorum sensing (QS) control to regulate virulence factor expression and biofilm formation. We hypothesized that the QS system of S. marcescens also regulates mechanisms that protect biofilms against protozoan grazing. To investigate this hypothesis, we compared the interactions of wild-type and QS mutant strains of S. marcescens biofilms with two protozoans having different feeding types under batch and flow conditions. Under batch conditions, S. marcescens forms microcolony biofilms, and filamentous biofilms are formed under flow conditions. The microcolony-type biofilms were protected from grazing by the suspension feeder, flagellate Bodo saltans, but were not protected from the surface feeder, Acanthamoeba polyphaga. In contrast, the filamentous biofilm provided protection against A. polyphaga. The main findings presented in this study suggest that (i) the QS system is not involved in grazing resistance of S. marcescens microcolony-type biofilms; (ii) QS in S. marcescens regulates antiprotozoan factor(s) that do not interfere with the grazing efficiency of the protozoans; and (iii) QS-controlled, biofilm-specific differentiation of filaments and cell chains in biofilms of S. marcescens provides an efficient mechanism against protozoan grazing.  相似文献   
165.
Recombinant proteins are of great commercial and scientific interest. However, most current production methods using mammalian cells involve the time- and labor-intensive step of creating stable cell lines. Although production methods based on transient gene expression could offer a significant improvement, transient transfection is currently still limited by low titers and low specific productivity compared to stable cell lines. To overcome these bottlenecks, we have explored the use of various growth factors to enhance specific productivity and titers in the context of transient gene expression. For that purpose, several growth factors were cloned and screened for their effect on transient gene expression in HEK293E and CHO-DG44 cells. In particular, acidic fibroblast growth factor (aFGF) was able to increase specific productivity by 60% and recombinant protein titers by 80% in HEK293E cells, while FGF9 increased titers by 250% in CHO-DG44 cells.  相似文献   
166.
This study focuses on the base of the Eifelian stage and on the abandoned Ohlesberg quarry. The exposed section (92 m thick) is related to the Lauch and Nohn formations. Petrographic study leads to the definition of 11 microfacies which are integrated in a palaeogeographical model. It corresponds to a complex ramp setting where carbonate, mixed and siliciclastic deposits coexist. The microfacies evolution is interpreted in terms of bathymetric and lateral variations, showing a general shallowing-upward trend and transitions between carbonate-dominated and siliciclastic-dominated sedimentary domains. This interpretation is supported by trends in magnetic susceptibility data. Even if the proximity to emerged areas appears to be the major influence on magnetic susceptibility values, the influence of carbonate productivity and wave agitation is also noted. The Ohlesberg section clearly points to the local and regional complex facies architecture, and advocates to variegated depositional environments along the Mid-Eifelian High.  相似文献   
167.
The classical view of cortical information processing is that of a bottom-up process in a feedforward hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlying these effects. Here we investigate a physiologically inspired model of two reciprocally connected cortical areas. Each area receives bottom-up as well as top-down information. This information is integrated by a mechanism that exploits recent findings on somato-dendritic interactions. (1) This results in a burst signal that is robust in the context of noise in bottom-up signals. (2) Investigating the influence of additional top-down information, priming-like effects on the processing of bottom-up input can be demonstrated. (3) In accordance with recent physiological findings, interareal coupling in low-frequency ranges is characteristically enhanced by top-down mechanisms. The proposed scheme combines a qualitative influence of top-down directed signals on the temporal dynamics of neuronal activity with a limited effect on the mean firing rate of the targeted neurons. As it gives an account of the system properties on the cellular level, it is possible to derive several experimentally testable predictions.  相似文献   
168.
A key role of Pox meso in somatic myogenesis of Drosophila   总被引:1,自引:0,他引:1  
The Pax gene Pox meso (Poxm) was the first and so far only gene whose initial expression was shown to occur specifically in the anlage of the somatic mesoderm, yet its role in somatic myogenesis remained unknown. Here we show that it is one of the crucial genes regulating the development of the larval body wall muscles in Drosophila. It has two distinct functions expressed during different phases of myogenesis. The early function, partially redundant with the function of lethal of scute [l(1)sc], demarcates the ;Poxm competence domain', a domain of competence for ventral and lateral muscle development and for the determination of at least some adult muscle precursor cells. The late function is a muscle identity function, required for the specification of muscles DT1, VA1, VA2 and VA3. Our results led us to reinterpret the roles of l(1)sc and twist in myogenesis and to propose a solution of the 'l(1)sc conundrum'.  相似文献   
169.
170.
Kaina B  Christmann M  Naumann S  Roos WP 《DNA Repair》2007,6(8):1079-1099
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号