首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7842篇
  免费   690篇
  国内免费   1篇
  8533篇
  2024年   5篇
  2023年   34篇
  2022年   91篇
  2021年   156篇
  2020年   92篇
  2019年   116篇
  2018年   157篇
  2017年   118篇
  2016年   257篇
  2015年   435篇
  2014年   472篇
  2013年   521篇
  2012年   687篇
  2011年   735篇
  2010年   501篇
  2009年   379篇
  2008年   541篇
  2007年   517篇
  2006年   454篇
  2005年   437篇
  2004年   412篇
  2003年   352篇
  2002年   379篇
  2001年   74篇
  2000年   44篇
  1999年   72篇
  1998年   90篇
  1997年   61篇
  1996年   49篇
  1995年   22篇
  1994年   29篇
  1993年   26篇
  1992年   24篇
  1991年   22篇
  1990年   14篇
  1989年   17篇
  1988年   15篇
  1986年   5篇
  1985年   8篇
  1984年   12篇
  1983年   10篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1967年   7篇
排序方式: 共有8533条查询结果,搜索用时 0 毫秒
991.
The modification of α1,6-linked fucose residues attached to the proximal (reducing-terminal) core N-acetylglucosamine residue of N-glycans by β1,4-linked galactose ("GalFuc" epitope) is a feature of a number of invertebrate species including the model nematode Caenorhabditis elegans. A pre-requisite for both core α1,6-fucosylation and β1,4-galactosylation is the presence of a nonreducing terminal N-acetylglucosamine; however, this residue is normally absent from the final glycan structure in invertebrates due to the action of specific hexosaminidases. Previously, we have identified two hexosaminidases (HEX-2 and HEX-3) in C. elegans, which process N-glycans. In the present study, we have prepared a hex-2;hex-3 double mutant, which possesses a radically altered N-glycomic profile. Whereas in the double mutant core α1,3-fucosylation of the proximal N-acetylglucosamine was abolished, the degree of galactosylation of core α1,6-fucose increased, and a novel Galα1,2Fucα1,3 moiety attached to the distal core N-acetylglucosamine residue was detected. Both galactosylated fucose moieties were also found in two parasitic nematodes, Ascaris suum and Oesophagostomum dentatum. As core modifications of N-glycans are known targets for fungal nematotoxic lectins, the sensitivity of the C. elegans double hexosaminidase mutant was assessed. Although this mutant displayed hypersensitivity to the GalFuc-binding lectin CGL2 and the N-acetylglucosamine-binding lectin XCL, the mutant was resistant to CCL2, which binds core α1,3-fucose. Thus, the use of C. elegans mutants aids the identification of novel N-glycan modifications and the definition of in vivo specificities of nematotoxic lectins with potential as anthelmintic agents.  相似文献   
992.
993.
Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111–131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.  相似文献   
994.
In the detection of plant pests, speed and accuracy are vital. High‐resolution melting curve (HRMC) analysis was therefore evaluated as a new tool for the identification of root‐knot nematodes (Meloidogyne spp.). On the basis of the second intergenic spacer (IGS2) region of the ribosomal DNA cistron, Meloidogyne chitwoodi, M. fallax and M. hapla were successfully distinguished from each other and the group of the three tropical species, M. incognita, M. arenaria and M. javanica. Conversely, it was shown that the IGS2 region is not suitable for the tropical species M. enterolobii (senior synonym of M. mayaguensis) as the amplification of multiple fragments of different lengths prevented a reliable HRMC analysis. However, the obtained results provide a proof of principle that HRMC analysis can be a suitable single‐tube assay for fast and accurate root‐knot nematode identification.  相似文献   
995.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   
996.
Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen‐activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo‐osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr‐197 and this phosphorylation requires LmjMPK2 activity. Lys‐42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild‐type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild‐type cells. This is the first report where a parasite aquaglyceroporin activity is post‐translationally modulated by a mitogen‐activated protein kinase.  相似文献   
997.
Gephyrin is a scaffolding protein required for the accumulation of inhibitory neurotransmitter receptors at neuronal postsynaptic membranes. In non-neuronal tissues, gephyrin is indispensible for the biosynthesis of molybdenum cofactor, the prosthetic group of oxidoreductases including sulfite oxidase and xanthine oxidase. However, the molecular and cellular basis of gephyrin’s non-neuronal function is poorly understood; in particular, the roles of its splice variants remain enigmatic. Here, we used cDNA screening as well as Northern and immunoblot analyses to show that mammalian liver contains only a limited number of gephyrin splice variants, with the C3-containing variant being the predominant isoform. Using new and established anti-gephyrin antibodies in immunofluorescence and subcellular fractionation studies, we report that gephyrin localizes to the cytoplasm of both tissue hepatocytes and cultured immortalized cells. These findings were corroborated by RNA interference studies in which the cytosolic distribution was found to be abolished. Finally, by blue-native PAGE we show that cytoplasmic gephyrin is part of a ~600 kDa protein complex of yet unknown composition. Our data suggest that the expression pattern of non-neuronal gephyrin is simpler than indicated by previous evidence. In addition, gephyrin’s presence in a cytosolic 600 kDa protein complex suggests that its metabolic and/or other non-neuronal functions are exerted in the cytoplasm and are not confined to a particular subcellular compartment.  相似文献   
998.
Cold-adapted ecosystems are often considered to be stable, species poor, and well protected. However, such ecosystems have been identified as being especially sensitive to threats from global warming. Despite this, recent studies have found low proportions of Red Listed species in these systems. In this study we explored the number of alpine species (dependent on alpine habitats for their survival) and their Red List status in Sweden. We determined the proportion of Red Listed species and explored discrepancies among different groups of organisms in terms of the proportion of Red Listed species and the criteria used for Red Listing. We found a total of 389 alpine species in twelve analyzed species groups. The overall proportion of Red Listed species was 29%, with 15% regarded as threatened. There were substantial differences among taxonomic groups with respect to the proportion of Red Listed species. Among mammals 75% of the species are Red Listed, along with 63% of butterflies and 50% of birds. In addition the single alpine dragonfly species and all three alpine stinging wasp species are also Red Listed. Although beetles, bumblebees and grasshoppers are represented by a total of 17 alpine species, none are Red Listed. In contrast to previous studies, our results show that the proportion of Red Listed species is high in alpine environments, indicating that ecosystems found above the tree line are indeed threatened. No species in Sweden have been Red Listed on the basis of the IUCN criterion E (unfavorable quantitative analysis), this is surprising since entire cold-adapted ecosystems are likely to disappear in the future. We highlight the need for a better and more coordinated application of the IUCN criteria, as well as a more stringent strategy to assess the extinction risks for alpine species, thus maintaining reliable Red Lists.  相似文献   
999.
1000.
Hit-to-lead evolution of 2-(2-((2-(4-chlorophenoxy)ethyl)thio)-1H-benzo[d]imidazol-1-yl)acetic acid (1), discovered in a high-throughput screening campaign as a novel chemotype of CRTh2 receptor antagonist, is presented. SAR development as well as in vitro and in vivo DMPK properties of selected representatives of substituted 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl)acetic acids are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号