首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9399篇
  免费   879篇
  国内免费   1篇
  2023年   34篇
  2022年   88篇
  2021年   177篇
  2020年   111篇
  2019年   134篇
  2018年   182篇
  2017年   144篇
  2016年   278篇
  2015年   479篇
  2014年   518篇
  2013年   592篇
  2012年   769篇
  2011年   816篇
  2010年   565篇
  2009年   432篇
  2008年   608篇
  2007年   579篇
  2006年   526篇
  2005年   498篇
  2004年   463篇
  2003年   406篇
  2002年   416篇
  2001年   123篇
  2000年   86篇
  1999年   120篇
  1998年   106篇
  1997年   89篇
  1996年   70篇
  1995年   48篇
  1994年   45篇
  1993年   45篇
  1992年   54篇
  1991年   57篇
  1990年   47篇
  1989年   45篇
  1988年   42篇
  1987年   24篇
  1986年   21篇
  1985年   38篇
  1984年   33篇
  1983年   31篇
  1982年   22篇
  1981年   27篇
  1980年   25篇
  1979年   30篇
  1978年   19篇
  1977年   22篇
  1976年   18篇
  1974年   32篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium that has a significant impact on both human and animal health. It is one of the most common food-borne pathogens responsible for a self-limiting gastroenteritis in humans and a similar disease in pigs, cattle and chickens. In contrast, intravenous challenge with S. Typhimurium provides a valuable model for systemic infection, often causing a typhoid-like infection, with bacterial replication resulting in the destruction of the spleen and liver of infected animals. Resistance to systemic salmonellosis in chickens is partly genetically determined, with bacterial numbers at systemic sites in resistant lines being up to 1000-fold fewer than in susceptible lines. Identification of genes contributing to disease resistance will enable genetic selection of resistant lines that will reduce Salmonella levels in poultry flocks. We previously identified a novel resistance locus on Chromosome 5, designated SAL1 . Through the availability of high-density SNP panels in the chicken, combined with advanced back-crossing of the resistant and susceptible lines, we sought to refine the SAL1 locus and identify potential positional candidate genes. Using a 6th generation backcross mapping population, we have confirmed and refined the SAL1 locus as lying between 54.0 and 54.8 Mb on the long arm of Chromosome 5 ( F  = 8.72, P  = 0.00475). This region spans 14 genes, including two very striking functional candidates; CD27-binding protein ( Siva ) and the RAC -alpha serine/threonine protein kinase homolog , AKT1 ( protein kinase B , PKB ).  相似文献   
12.
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.  相似文献   
13.
The socioeconomics and the ecological impact of nomadic pastoralism were analyzed using interviews with 87 herder families and secondary information in the western Khangai, Mongolia. The pastoralists had an income above the national average for rural areas in Mongolia. Most herders continued traditional seasonal migration patterns, which involved ca. 10 moves per year over a total distance of ca. 100 km between summer and winter grazing grounds. As elsewhere in Mongolia, the number of goats owned by herders has greatly increased and cashmere has become the main source of cash income. Total livestock numbers rose considerably after decollectivization of the livestock sector in 1992, but in recent years have periodically been reduced by harsh winters, often combined with drought. Due to the high economic risk of these periodic livestock losses, many herders invest in better education for their children to enable them to migrate to the cities.  相似文献   
14.
The inactivation of Bacillus subtilis spores during long-term exposure (up to several months) to extreme dryness (especially vacuum) is strain-dependent, through only to a small degree. During a first phase (lasting about four days) monolayers of spores lose about 20% of their viability, regardless of the strain studied. During this phase loss in viability can be equally attributed both to damages of hydrophobic structures (membranes and proteins) and DNA. During a second phase lasting for the remaining time of experimental observation (weeks, months and years) the loss in viability is slowed. A viability of 55% to 75% (depending on the strain) is attained after a total exposure of 36 days. The loss in viability during the second phase can be correlated with the occurrence of DNA double strand breaks. Also covalent DNA-protein cross-links are formed by vacuum exposure. If the protein moiety of these cross-links is degraded by proteinase K-treatment in vitro additional DNA double strand breaks result. The data are also discussed with respect to survival on Mars and in near Earth orbits.  相似文献   
15.
16.
17.
18.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
19.
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of βNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of βNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, αNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号