首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7890篇
  免费   698篇
  国内免费   1篇
  2023年   28篇
  2022年   66篇
  2021年   155篇
  2020年   92篇
  2019年   117篇
  2018年   157篇
  2017年   120篇
  2016年   257篇
  2015年   438篇
  2014年   475篇
  2013年   524篇
  2012年   687篇
  2011年   741篇
  2010年   509篇
  2009年   383篇
  2008年   541篇
  2007年   519篇
  2006年   459篇
  2005年   437篇
  2004年   415篇
  2003年   351篇
  2002年   385篇
  2001年   77篇
  2000年   45篇
  1999年   74篇
  1998年   89篇
  1997年   60篇
  1996年   49篇
  1995年   23篇
  1994年   29篇
  1993年   26篇
  1992年   29篇
  1991年   24篇
  1990年   18篇
  1989年   17篇
  1988年   16篇
  1985年   10篇
  1984年   15篇
  1983年   10篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1973年   5篇
  1969年   6篇
  1967年   7篇
排序方式: 共有8589条查询结果,搜索用时 46 毫秒
161.
Methyl jasmonate (MeJA)‐mediated defense in conventional cotton, Gossypium hirsutum L. (Malvaceae), against cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was investigated with respect to the activities of the detoxification enzymes acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S‐transferases (GST) in pupae as well as the performance of larvae. The results suggested that exogenous application of MeJA to cotton leaves depressed the activities of AChE, CarE, and GST of cotton bollworm pupae. Both the absolute and protein‐specific AChE activities of pupae were depressed at all three MeJA concentrations applied as compared with a control, and the effects of 0.4 mM MeJA were significantly higher than those of 0.1 and 0.2 mM. A marked reduction in absolute CarE activity was observed at the 0.4 mM MeJA treatment, whereas the protein‐specific activity was increased by 0.2 and 0.4 mM. Absolute GST activity was significantly depressed only by the 0.4 mM MeJA treatment, whereas protein‐specific GST activity was not markedly affected by MeJA. Protein content of pupae was reduced by 0.4 mM MeJA‐induced defense in cotton leaves. The development time of larvae was protracted and pupal weight was reduced by 0.1 and 0.4 mM MeJA‐treated cotton leaves. Larval weight gain was inhibited significantly on 0.2 and 0.4 mM MeJA‐treated cotton leaves. The results suggested that MeJA‐induced plant defense may have adverse effects on H. armigera. In addition to the inhibition of growth and development, induced defense may also impair the insect's ability to detoxify toxic plant secondary metabolites.  相似文献   
162.
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RIs) was negatively correlated with the strength of natural selection (RIm), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage.  相似文献   
163.
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.  相似文献   
164.
This study aimed at visualization of cyclooxygenase-2 (COX-2) protein expression in melanoma cells by confocal laser induced cryofluorescence microscopy using 4-(3-(4-methoxyphenyl)-1H-indol-2-yl)benzene-sulfonamide (C1) representative for a novel class of autofluorescent 2,3-diarylsubstituted indole-based selective COX-2 inhibitors.COX-2 expression was measured in human melanoma cell lines A2058 and MelJuso by immunocytochemistry and immunoblotting. Cellular uptake experiments using varying C1 concentrations down to 0.1 nM (with/without molar excess of celecoxib as control) were performed at 37 °C. Cryofluorescence microscopy was conducted at 20 K.COX-2 protein expression was successfully visualized by C1 in A2058 cells. COX-2-negative MelJuso cells showed no specific accumulation of C1. Control experiments using celecoxib and, additionally, implemented fluorescence spectroscopy confirmed specificity of both cellular uptake and intracellular association of C1.Cryofluorescence microscopy in combination with spectroscopy allowed for visualization of COX-2 protein expression in melanoma cells in vitro using a selective COX-2 inhibitor at very low concentrations.  相似文献   
165.
The occurrence of members of the highly diverse Daphnia longispina complex in Southern and Central Asian high-mountain lakes has been recognized for more than a century. Until now, however, no molecular data have been available for these populations inhabiting the “Roof of the World.” Here, we present the first identification for D. gr. longispina from that region based on a molecular phylogeny. Our findings show that alpine lakes in the Pamir and Himalaya mountains host populations of widespread species of the complex, for which these are the highest known localities. A spineless morph from the Himalaya region, previously labeled as D. longispina var. aspina, was clustering tightly with D. dentifera, while a population from the Pamir mountain range was grouped with D. longispina. In addition, we analyzed ecological data available for lakes in the Khumbu region (Himalaya) to investigate ecological preferences of non-pigmented D. gr. longispina. The identified factors can at least partly be related to avoidance of high UV conditions by this species. We conclude that the widespread species D. dentifera and D. longispina also colonized the Asian high-mountain lakes, and identify the need for further research to trace the possible effect of rapid environmental changes in this region on the diversity and ecology of high-altitude Daphnia populations.  相似文献   
166.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   
167.
New holococcolith-heterococcolith life-cycle associations are documented based on observations of combination coccospheres. Daktylethra pirus is shown to be a life-cycle phase of Syracosphaera pulchra and Syracolithus quadriperforatus a life-cycle phase of Calcidiscus leptoporus. In addition, new observations from cultures confirm the life-cycle associations of Crystallolithus braarudii with Coccolithus pelagicus and of Zygosphaera hellenica with Coronosphaera mediterranea. In all four cases previous work has shown that the heterococcolithophorid species is associated with another holococcolithophorid. Two other examples of a heterococcolithophorid being associated with two holococcolithophorids have previously been identified, so this seems to be a common phenomenon. The six examples are reviewed to determine whether a single underlying mechanism is likely to be responsible for all cases. It is concluded that there is no single mechanism but rather that the six examples fall into three categories: (a) in two cases the holococcolith types are probably simply ecophenotypic morphotypes; (b) in two other cases the holococcolith types are discrete and are paralleled by morphometric differences in the heterococcolith types; (c) in the final two cases the holococcolith types are discrete but are not paralleled by any obvious morphological variation in the heterococcolith morphology. We infer that cryptic speciation may be widespread in heterococcolithophorid phases and that study of holococcolithophorid phases can provide key data to elucidate this phenomenon.  相似文献   
168.
A screening for siderophores produced by the ectomycorrhizal fungi Laccaria laccata and Laccaria bicolor in synthetic low iron medium revealed the release of several different hydroxamate siderophores of which four major siderophores could be identified by high resolution mass spectrometry. While ferricrocin, coprogen and triacetylfusarinine C were assigned as well as other known fungal siderophores, a major peak of the siderophore mixture revealed an average molecular mass of 797 for the iron-loaded compound. High resolution mass spectrometry indicated an absolute mass of m/z = 798.30973 ([M + H]+). With a relative error of Δ = 0.56 ppm this corresponds to linear fusigen (C33H52N6O13Fe; MW = 797.3). The production of large amounts of linear fusigen by these basidiomycetous mycorrhizal fungi may possibly explain the observed suppression of plant pathogenic Fusarium species. For comparative purposes Fusarium roseum was included in this study as a well known producer of cyclic and linear fusigen.  相似文献   
169.
Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.A number of studies have shown that increased cTreg numbers and their immunoregulatory function are promoted by the presence of commensal intestinal microbes (either individual species such as Bacteroides fragilis1, defined benign consortia of bacteria such as the altered Schaedler flora2 or groups of Clostridia3). In a recent paper in Science, Garrett and colleagues report how these effects are generated through molecular exchanges between the host and the enormous load of microbes carried in the lower intestine4.Smith et al.4 investigated the role of SCFA, which are bacterial fermentation products produced by a wide variety of bacteria through anaerobic acidogenic pathways. SCFA released by colonic bacteria have long been known to be important as a carbon source for colonic epithelial cells5. From this new work we can now see that signaling effects of SCFA also regulate cTreg homeostasis.Microbiota-derived SCFA were found to increase total (thymic-derived) cTreg numbers. The homing characteristics to the colon and the regulatory functions of these cells (such as IL-10 production) were also enhanced through SCFA treatment.These effects are mediated by the G-protein-coupled free fatty acid receptor 43 (GPR43). Using mice that are genetically deficient in this receptor, Smith et al. showed that this signaling pathway is responsible for the increased cTreg numbers in vivo and that signaling by SCFA reduces the susceptibility to chronic intestinal inflammation. As they found GPR43 expression on cTreg (compared with lower GPR43 expression on Treg from other sites) this may be a direct effect, e.g. alterations in histone deacetylation. However, other cell types in the GI tract also express GPR43, including enteroendocrine cells and other leukocytes, therefore indirect effects are not yet excluded. In fact, Atarashi and colleagues have recently published their studies of how Clostridial species induce cTreg6. They found that bacterial-derived SCFA stimulate epithelial cells to produce TGFβ, contributing to Treg differentiation and expansion.Whereas other species-specific bacterial molecules, such as B. fragilis-derived PSA, have previously been demonstrated to have immunomodulatory functions2, the report by Smith et al. is an elegant demonstration of the ubiquitous and pervasive bacterial metabolites that impact on the mucosal immune system. There is really a rather promiscuous exchange of metabolites between the microbiota and the host, with metabolic pathways that require components of both eukaryotic and prokaryotic cells. Bile acids are a great example of such a mixed pathway, where a dysbiosis caused by obesity promotes liver cancer through alterations in the microbial bile acid metabolism7. Although Smith et al. do not see any SCFA-mediated effects on central Treg compartments (outside the colon), other bacterial metabolites that reach systemic sites likely modulate adaptive or innate immune cell function at systemic sites. This may eventually rationalize the observed increased incidence of intestinal inflammation and systemic immune-mediated disorders such as autoimmune or allergic diseases (Figure 1), which are often linked to changes within the microbiota due to diet or antibiotic use8.Open in a separate windowFigure 1Bacterial metabolites that reach systemic sites likely modulate adaptive or innate immune cell function at systemic sites. This may eventually rationalize the observed correlation of microbiota composition and susceptibility to systemic immune-mediated disorders such as autoimmune or allergic diseases.A clinical situation in which the colon faces a deficiency of SCFA happens after surgery that diverts the fecal stream into a stoma bag, leaving the distal colon without its normal contents. This operation may be carried out to protect a low surgical anastomosis after removal of a tumor. The result is that the defunctioned colon frequently becomes inflamed, a condition recognized as ''diversion colitis''. In some cases, treatment with SCFA has been able to treat the condition successfully9. The lack of SCFA as a carbon source for colonocytes was previously considered as a key factor in the aetiopathogenesis of the condition, although this will need to be reviewed in the light of the new data on the effects of SFCA on colonic Treg numbers and function.Our colonic health depends on our intestinal microbiota and what we feed them. Changes in Western dietary patterns, e.g., due to reduced intake of plant fibers, might drastically impact the production of SCFA within the intestine. Furthermore, Smith et al. demonstrate a direct effect of antibiotic (vancomycin) treatment on SCFA levels, which in turn affects intestinal immune regulation by reducing the number of cTreg.Taken together, this draws a picture of a superorganism composed of the host (us) and our microbiota, with the metabolic interface as an important communication tool. This allows the host and the microbiota to adapt to and communicate with each other. Originally, germ-free animals were derived to challenge the notion that the existence of higher organisms was irrevocably linked to their associated microbiotas10. Although the germ-free program succeeded11, it has provided us with powerful tools to show that the original notion was justified: pervasive metabolic interactions and signaling make us the sum of our prokaryotic and eukaryotic cellular components.  相似文献   
170.
Metastasis is the major cause of breast cancer mortality. The strength of cell adhesion to extracellular matrix is critical to cancer cell migration. Integrins, the primary mediators of cell to extra-cellular matrix adhesion, contain distinct divalent cation-binding sites. Binding of manganese and magnesium is vital to integrin-mediated cancer cell adhesion and migration. We hypothesized that zinc, a divalent cation, can modulate breast cancer metastasis through interfering with these divalent cation-dependent integrin-mediated cancer cell adhesion and migration. MDA-MB-231 cells were cultured in a zinc-depleted medium supplemented with 0 (control), 2.5, 5, 10, 25 and 50 μM of zinc to mimic severe zinc-deficiency, moderate zinc-deficiency, adequate zinc and three levels of zinc-supplementation: low-, moderate- and high-levels of zinc-supplementation, respectively. Zinc treatments had no effect on cellular zinc concentration, cell number and cell viability. Zinc at 5–50 μM reduced migration distance of MDA-MB-231 cells on fibronectin by 43–86% and migration rate on fibronectin by 72–90%. Zinc induced a dose-dependent inhibition of cell adhesion to fibronectin (R2=?0.98). Zinc at 10–50 μM reduced magnesium-facilitated cell adhesion to fibronectin in a dose-dependent manner (R2=?0.90). However, zinc had no effect on manganese-facilitated cell adhesion to fibronectin. Zinc at 5–50 μM caused rounding of the normally elongated, irregular-shaped MDA-MB-231 cells and disappearance of F-actin. Anti-integrin α5- and β1-subunit blocking antibodies inhibited magnesium-facilitated cell adhesion to fibronectin by 95 and 99%, respectively. In summary, zinc inhibited MDA-MB-231 cell migration on fibronectin by interfering with magnesium-dependent integrin-, likely integrin α5/β1-, mediated adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号