首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7888篇
  免费   706篇
  国内免费   1篇
  8595篇
  2023年   34篇
  2022年   89篇
  2021年   157篇
  2020年   93篇
  2019年   117篇
  2018年   156篇
  2017年   118篇
  2016年   255篇
  2015年   435篇
  2014年   473篇
  2013年   522篇
  2012年   688篇
  2011年   736篇
  2010年   500篇
  2009年   379篇
  2008年   540篇
  2007年   519篇
  2006年   460篇
  2005年   440篇
  2004年   420篇
  2003年   356篇
  2002年   383篇
  2001年   76篇
  2000年   46篇
  1999年   75篇
  1998年   89篇
  1997年   62篇
  1996年   48篇
  1995年   24篇
  1994年   30篇
  1993年   27篇
  1992年   26篇
  1991年   25篇
  1990年   16篇
  1989年   18篇
  1988年   16篇
  1986年   6篇
  1985年   9篇
  1984年   12篇
  1983年   12篇
  1982年   5篇
  1981年   11篇
  1980年   7篇
  1977年   6篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
  1973年   5篇
  1968年   5篇
  1967年   7篇
排序方式: 共有8595条查询结果,搜索用时 0 毫秒
81.
N6‐methyladenosine (m6A) is a highly dynamic RNA modification that has recently emerged as a key regulator of gene expression. While many m6A modifications are installed by the METTL3–METTL14 complex, others appear to be introduced independently, implying that additional human m6A methyltransferases remain to be identified. Using crosslinking and analysis of cDNA (CRAC), we reveal that the putative human m6A “writer” protein METTL16 binds to the U6 snRNA and other ncRNAs as well as numerous lncRNAs and pre‐mRNAs. We demonstrate that METTL16 is responsible for N6‐methylation of A43 of the U6 snRNA and identify the early U6 biogenesis factors La, LARP7 and the methylphosphate capping enzyme MEPCE as METTL16 interaction partners. Interestingly, A43 lies within an essential ACAGAGA box of U6 that base pairs with 5′ splice sites of pre‐mRNAs during splicing, suggesting that METTL16‐mediated modification of this site plays an important role in splicing regulation. The identification of METTL16 as an active m6A methyltransferase in human cells expands our understanding of the mechanisms by which the m6A landscape is installed on cellular RNAs.  相似文献   
82.
Bratzel G  Buehler MJ 《Biopolymers》2012,97(6):408-417
Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.  相似文献   
83.

Background  

Non-invasive planar fluorescence reflectance imaging (FRI) is used for accessing physiological and molecular processes in biological tissue. This method is efficiently used to detect superficial fluorescent inclusions. FRI is based on recording the spatial radiance distribution (SRD) at the surface of a sample. SRD provides information for measuring structural parameters of a fluorescent source (such as radius and depth). The aim of this article is to estimate the depth and radius of the source distribution from SRD, measured at the sample surface. For this reason, a theoretical expression for the SRD at the surface of a turbid sample arising from a spherical light source embedded in the sample, was derived using a steady-state solution of the diffusion equation with an appropriate boundary condition.  相似文献   
84.
85.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   
86.
Random network models have been a popular tool for investigating cortical network dynamics. On the scale of roughly a cubic millimeter of cortex, containing about 100,000 neurons, cortical anatomy suggests a more realistic architecture. In this locally connected random network, the connection probability decreases in a Gaussian fashion with the distance between neurons. Here we present three main results from a simulation study of the activity dynamics in such networks. First, for a broad range of parameters these dynamics exhibit a stationary state of asynchronous network activity with irregular single-neuron spiking. This state can be used as a realistic model of ongoing network activity. Parametric dependence of this state and the nature of the network dynamics in other regimes are described. Second, a synchronous excitatory stimulus to a fraction of the neurons results in a strong activity response that easily dominates the network dynamics. And third, due to that activity response an embedding of a divergent-convergent feed-forward subnetwork (as in synfire chains) does not naturally lead to a stable propagation of synchronous activity in the subnetwork; this is in contrast to our earlier findings in isolated subnetworks of that type. Possible mechanisms for stabilizing the interplay of volleys of synchronous spikes and network dynamics by specific learning rules or generalizations of the subnetworks are discussed.  相似文献   
87.
The peroxisome: an update on mysteries   总被引:1,自引:0,他引:1  
Peroxisomes contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, which render them indispensable to human health and development. Peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. In recent years, the interest in peroxisomes and their physiological functions has significantly increased. This review intends to highlight recent discoveries and trends in peroxisome research, and represents an update as well as a continuation of a former review article. Novel exciting findings on the biological functions, biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross-talk of peroxisomes with other subcellular compartments are addressed. Furthermore, recent findings on the role of peroxisomes in the brain are discussed.  相似文献   
88.
Cancer stem cells and human malignant melanoma   总被引:1,自引:0,他引:1  
Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma.  相似文献   
89.
The Attwater's prairie chicken (APC; Tympanuchus cupido attwateri Bendire, 1894) has been a federally listed endangered species since 1967. Several captive propagation programs consisting of small populations are being used to keep this species from extinction. Fecal samples were collected from APCs in April 2007 and again in August 2008 from 2 separate captive propagation facilities in Texas after clinical signs of coccidiosis were observed. One Eimeria species was observed (Eimeria attwateri), which we describe as a putative new species. Sporulated oocysts are ellipsoidal, 30.0 × 18.4 (27.4-31.3 × 16.0-22.4) μm. Oocysts have a smooth wall 0.7 μm thick and lack both a micropyle and oocyst residuum, but 1 ellipsoidal polar granule is present, 2.3 × 1.9 (2.1-2.4 × 1.7-2.0) μm. Sporocysts have a nipple-like Stieda body with a rounded opposite end and are 14.0 × 7.1 (10.2-16.8 × 6.0-9.2) μm. The sporocysts contain a sporocyst residuum usually consisting of 2-4 dispersed globules, and each sporozoite contains 2 large posterior spheroid refractile bodies 3.4 μm wide. Nucleotide sequence amplified from the 18S rDNA does not match any DNA sequence information for publicly available Eimeria species, and phylogenetic reconstructions place this species with other eimerians from Galliformes. The discovery of a potentially pathogenic species of Eimeria in captive APCs is of great importance, and managers should be aware of the potential devastating effect(s) this parasite could have on the APC conservation programs.  相似文献   
90.
Dirk Gansert  Markus Burgdorf 《Flora》2005,200(5):444-455
The effect of xylem sap flow in stems of mature Betula pendula Roth on radial CO2 efflux was studied from April to October 2001. Temperature-controlled respiration cuvettes allowed measurements of CO2 efflux without interference from temperature gradients between stem surface and sapwood. Variations of sap flow in different stem sectors, and in a given sector at different heights were analysed. Daytime reduction of CO2 efflux caused by sap flow was expressed as the difference between gross and apparent CO2 release. Gross CO2 release was calculated from Arrhenius-equations derived from night-time data records of the same day, which were free from interference by sap flow. In mid-July, daytime reductions of CO2 efflux reached 1.8–3.9 μmol CO2 m−2 g−1 xylem sap transpired. Assuming tree-specific maximum transpiration rates of 30 kg H2O d−1 this is up to 40% of gross CO2 release. In relation to photosynthetic CO2 fixation the endogenous supply of dissolved CO2 to the leaves acccounted for 0.5–3.7%. This study indicates a negative correlation between sap flow velocity and radial CO2 efflux from B. pendula stems. Periods of unbalanced CO2 partial pressures between aqueous and gaseous pathways during increase and decrease of sap flow seem to affect gaseous CO2 release through lenticels. It is concluded that CO2 efflux rates are not simply equivalent to respiration rates because of the interference of aqueous CO2 transport by xylem sap flow in the wood-body of trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号