首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29053篇
  免费   2480篇
  国内免费   6篇
  2023年   115篇
  2022年   130篇
  2021年   324篇
  2020年   227篇
  2019年   251篇
  2018年   568篇
  2017年   533篇
  2016年   716篇
  2015年   867篇
  2014年   1003篇
  2013年   1335篇
  2012年   2152篇
  2011年   2290篇
  2010年   1320篇
  2009年   925篇
  2008年   1842篇
  2007年   1795篇
  2006年   1675篇
  2005年   1536篇
  2004年   1470篇
  2003年   1341篇
  2002年   1348篇
  2001年   933篇
  2000年   1018篇
  1999年   533篇
  1998年   291篇
  1997年   207篇
  1996年   242篇
  1995年   194篇
  1994年   178篇
  1993年   176篇
  1992年   207篇
  1991年   208篇
  1990年   176篇
  1989年   170篇
  1988年   160篇
  1987年   151篇
  1986年   157篇
  1985年   174篇
  1984年   182篇
  1983年   151篇
  1982年   177篇
  1981年   175篇
  1980年   121篇
  1979年   152篇
  1978年   116篇
  1977年   115篇
  1975年   116篇
  1974年   105篇
  1973年   102篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.  相似文献   
993.

Introduction

Human primary cells originating from different locations within the body could differ greatly in their metabolic phenotypes, influencing both how they act during physiological/pathological processes and how susceptible/resistant they are to a variety of disease risk factors. A novel way to monitor cellular metabolism is through cell energetics assays, so we explored this approach with human primary cell types, as models of sclerotic disorders.

Objectives

In order to better understand pathophysiological processes at the cellular level, our goals were to measure metabolic pathway activities of endothelial cells and fibroblasts, and determine their metabolic phenotype profiles.

Methods

Biolog Phenotype MicroArray? technology was used for the first time to characterize metabolic phenotypes of diverse primary cells. These colorimetric assays enable detection of utilization of 367 specific biochemical substrates by human endothelial cells from the coronary artery (HCAEC), umbilical vein (HUVEC) and normal, healthy lung fibroblasts (NHLF).

Results

Adenosine, inosine, d-mannose and dextrin were strongly utilized by all three cell types, comparable to glucose. Substrates metabolized solely by HCAEC were mannan, pectin, gelatin and prevalently tricarballylic acid. HUVEC did not show any uniquely metabolized substrates whereas NHLF exhibited strong utilization of sugars and carboxylic acids along with amino acids and peptides.

Conclusion

Taken together, we show for the first time that this simple energetics assay platform enables metabolic characterization of primary cells and that each of the three human cell types examined gives a unique and distinguishable profile.
  相似文献   
994.
Biomarker studies for metabolic disorders like diabetes mellitus (DM) are an important approach towards a better understanding of the underlying pathophysiological mechanisms of diseases (Roberts and Gerszten in Cell Metab 18:43–50, 2013; Wilson et al. in Proteome Res 4:591–598, 2005). Furthermore, screening of potential metabolic biomarkers opens the opportunity of early diagnosis as well as therapy and drug monitoring of metabolic disorders (Rhee et al. in J Clin Invest 10:1–10, 2011; Wang et al. in Nat Med 17:448–458, 2011; Wenk in Nat Rev Drug Discov 4:594–610, 2005). The aim of the present study was to develop methods for the quantitative determination of 74 potential metabolite biomarkers for DM and diabetic nephropathy (DN) in serum. Several studies have shown that the concentrations of many polar metabolites like amino or organic acids are changed in subjects suffering from diabetes (Wang et al. in Nat Med 17:448–458, 2011; Yuan et al. in J Chromatogr B 813:53–58, 2007). Analyzing polar analytes presents a challenge in liquid chromatography (LC) coupled with ESI–MS/MS (Gika et al. in J Sep Sci 31:1598–1608, 2008; Spagou et al. in J Sep Sci 33:716–727, 2010). Considering those reasons we decided to develop a specific HILIC–ESI–QqQ–MS/MS-method for quantitative determination of these polar metabolites. A subsequent method validation was carried out for both HILIC and RP chromatography with respect to the guidelines of the Food and Drug Administration (FDA in Food and Drug Administration: Guidance for industry, bioanalytical method validation, 2001). The HILIC and RP LC–MS methods were successfully validated. Furthermore, the HILIC method presented here was applied to serum samples of GIPRdn transgenic mice, a diabetic strain developing DN, and non transgenic littermate controls. Significant, diabetes-associated changes were observed for the concentrations of 21 out of 62 metabolites. The new methods described here accurately quantify 74 metabolites known to be regulated in diabetes, allowing for direct comparison between studies and laboratories. Thus, these methods may be highly adoptable in clinical research, providing a starting point for early diagnosis and metabolic screening.  相似文献   
995.
Dopamine has been implicated in the regulation of sleep–wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness–Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19–82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64–82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.  相似文献   
996.
Palaeoxenus sinensis Chang, Muona & Teräväinen sp. nov. (Coleoptera, Eucnemidae) is described on the basis of a Cretaceous larva found from the Yixian Formation in Huangbanjigou, Liaoning Province, China. The only previously known member of this clade is a southern Californian endemic, Dohrn's elegant eucnemid beetle (Palaeoxenus dohrni), a species that develops in conifers, especially the incense cedar (Calocedrus decurrens). The new find proves that the highly specialized main eucnemid lineages had evolved 123 Mya, before the main radiation of the angiosperms and probably as an adaptation to development in gymnosperms.  相似文献   
997.
The temporal and spatial organization of the annual cycle according to local conditions is of crucial importance for individuals’ fitness. Moreover, which sites and when particular sites are used can have profound consequences especially for migratory animals, because the two factors shape interactions within and between populations, as well as between animal and the environment. Here, we compare spatial and temporal patterns of two latitudinally separated breeding populations of a trans‐Equatorial passerine migrant, the collared flycatcher Ficedula albicollis, throughout the annual cycle. We found that migration routes and non‐breeding residency areas of the two populations largely overlapped. Due to climatic constraints, however, the onset of breeding in the northern population was approximately two weeks later than that of the southern population. We demonstrate that this temporal offset between the populations carries‐over from breeding to the entire annual cycle. The northern population was consistently later in timing of all subsequent annual events – autumn migration, non‐breeding residence period, spring migration and the following breeding. Such year‐round spatiotemporal patterns suggest that annual schedules are endogenously controlled with breeding latitude as the decisive element pre‐determining the timing of annual events in our study populations.  相似文献   
998.
Two-tier vessels, developed for culturing of microalgae and cyanobacteria at high cell density on a shaken platform, were assembled from a flat lower chamber to be filled with a CO2 buffer and an upper flat sterile chamber for the culture that was separated from the lower chamber by a porous polypropylene membrane. Diffusive gas exchange with the atmosphere was controlled by the O2 outlet channel. Referred to surface area, rates of CO2 transfer to a shaken weakly alkaline buffer solution across the membrane were higher than those reached on the conventional pathway through the free upper liquid surface. Membrane-mediated CO2 supply enabled rapid growth of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 up to ultrahigh cell density. The biomass (dry weight) concentration of Synechococcus cultures reached more than 30 g L?1 on a buffered medium with adequate concentrations of mineral nutrients. An increase of 15 to 20 g L?1 was observed during repeated two-day cycles. Separate pathways for CO2 supply and oxygen outlet prevented significant loss of CO2. Convective gas flow through the oxygen outlet channel enabled the estimation of the O2 generation rate. The permeability of the channel for diffusive O2/N2 exchange limited the O2 concentration to a moderate value. It is concluded that shaken flat cultures using CO2 supply through a porous hydrophobic membrane and diffusive release of O2 through a separate pathway are promising for research on microalgae and cyanobacteria.  相似文献   
999.

Key message

Different environmental conditions affect tree senescence by different patterns of carbohydrate concentrations and have specific impact on the dissection of the photosynthetic apparatus.

Abstract

A proactive cultivation of Mediterranean broadleaf species, including oaks, has been suggested to fill possible temporal and spatial gaps in forestry created by Climate Change in Central Europe in the future. Climate can affect trees in several different ways, e.g., by modulating the course of leaf senescence. Senescence-associated processes, like regulation of carbohydrates and changes in chlorophyll fluorescence under drought stress conditions were studied with leaf tissue of drought-tolerant downy oak (Quercus pubescens). Two months of consistent drought stress in a frost-free greenhouse led to significantly earlier senescence and significant increased amounts of soluble sugars in the leaves of the drought-stressed group in comparison to a well-watered control group. Similar sugar accumulation was observed in trees outdoors, after exposure to frost. In contrast to monocarpic plants the accumulation of free sugars is neither triggering leaf senescence, nor is it a side effect of age-depending changes in Q. pubescens. Instead, sugar accumulation is induced by abiotical factors, like drought and frost. Furthermore, we suggest that the senescence process in the absence of drought stress or frost depends on the source status of the leaf, which, in term, is a function of light (through photosynthesis) and night temperature (through respiration). Contents of the storage metabolite starch decreased during late summer in all three groups. Drought-stressed plants showed a decline of the connectivity of photosystem II antenna, reflected as the L-band in the chlorophyll fluorescence induction curves, and stronger correlations between the declines in the capacity of photosynthetic dark reactions and electron transport-associated chlorophyll fluorescence parameters. We conclude that the disassembly of single parts of the photosynthetic apparatus during leaf senescence is a uniform process, but the onset of this process depends on abiotical environmental factors.
  相似文献   
1000.
Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to ?413 and ?26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号