首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7817篇
  免费   690篇
  国内免费   1篇
  8508篇
  2024年   5篇
  2023年   34篇
  2022年   89篇
  2021年   156篇
  2020年   92篇
  2019年   116篇
  2018年   156篇
  2017年   118篇
  2016年   255篇
  2015年   435篇
  2014年   473篇
  2013年   519篇
  2012年   683篇
  2011年   735篇
  2010年   500篇
  2009年   380篇
  2008年   538篇
  2007年   515篇
  2006年   455篇
  2005年   433篇
  2004年   411篇
  2003年   351篇
  2002年   379篇
  2001年   74篇
  2000年   44篇
  1999年   72篇
  1998年   88篇
  1997年   60篇
  1996年   48篇
  1995年   22篇
  1994年   29篇
  1993年   25篇
  1992年   23篇
  1991年   22篇
  1990年   14篇
  1989年   17篇
  1988年   15篇
  1985年   9篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   10篇
  1980年   6篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1968年   5篇
  1967年   7篇
排序方式: 共有8508条查询结果,搜索用时 15 毫秒
91.
Estradiol and progesterone mediate their actions by binding to classical nuclear receptors, estrogen receptor α (ERα) and estrogen receptor β (ERβ) and progesterone receptor A and B (PR-A and PR-B) and the non-classical G protein-coupled estrogen receptor (GPER). Several animal knock-out models have shown the importance of the receptors for growth of the oocyte and ovulation. The aim of our study was to identify GPER in human granulosa cells (GC) for the first time. Moreover, the effect of different doses of gonadotropins on estrogen and progesterone receptors in the human ovary should be investigated as follicle stimulating hormone (FSH) and luteinizing hormone (LH) are also responsible for numerous mechanisms in the ovary like induction of the steroid biosynthesis. Human GC were cultured in vitro and stimulated with different doses of recombinant human FSH or LH. Receptor expression was analyzed by immunocytochemistry and quantitative real-time RT-PCR. GPER could be identified for the first time in human GC. It could be shown that high concentrations of LH increase GPER protein expression. Furthermore FSH and LH increased ERβ, PR-A and PR-B significantly on protein level. These findings were verified for high doses of FSH and LH on mRNA level. ERα was not affected with FSH or LH. We assume that gonadotropins induce GPER, ERβ and PR in luteinized granulosa cells.  相似文献   
92.
OBJECTIVE: To determine the usefulness of fine needle aspiration cytology (FNAC) in combination with flow cytometry on the new World Health Organization (WHO) classification of malignant lymphoma. STUDY DESIGN: Smears and flow cytometry reports of patients who underwent both methods at the same time were independently examined. Both methods were classified according to the new WHO classification of malignant lymphoma. RESULTS: A group of 131 smears were examined. In 89 cases exact diagnosis was made by cytomorphology. Twenty-five cases were not classified exactly or were classified incorrectly, resulting in a sensitivity of 96.4% and a specificity of 85%. With flow cytometry, only 30 of 131 patients could be classified exactly, resulting in a sensitivity of 27% and specificity of 100%, respectively. The combination of methods showed a sensitivity of 85% and specificity of 100%. CONCLUSION: The combination of FNAC and flow cytometry obtained by FNAC can distinguish between benign and malignant lymphoid infiltrates and support a diagnosis of lymphoma.  相似文献   
93.
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.  相似文献   
94.
Bioluminescence imaging is widely used for optical cell tracking approaches. However, reliable and quantitative bioluminescence of transplanted cells in the brain is highly challenging. In this study we established a new bioluminescence imaging protocol dedicated for neuroimaging, which increases sensitivity especially for noninvasive tracking of brain cell grafts. Different D-Luciferin concentrations (15, 150, 300 and 750 mg/kg), injection routes (iv, ip, sc), types of anesthesia (Isoflurane, Ketamine/Xylazine, Pentobarbital) and timing of injection were compared using DCX-Luc transgenic mice for brain specific bioluminescence. Luciferase kinetics was quantitatively evaluated for maximal photon emission, total photon emission and time-to-peak. Photon emission followed a D-Luciferin dose-dependent relation without saturation, but with delay in time-to-peak increasing for increasing concentrations. The comparison of intravenous, subcutaneous and intraperitoneal substrate injection reflects expected pharmacokinetics with fastest and highest photon emission for intravenous administration. Ketamine/Xylazine and Pentobarbital anesthesia showed no significant beneficial effect on maximal photon emission. However, a strong difference in outcome was observed by injecting the substrate pre Isoflurane anesthesia. This protocol optimization for brain specific bioluminescence imaging comprises injection of 300 mg/kg D-Luciferin pre Isoflurane anesthesia as an efficient and stable method with a signal gain of approx. 200% (compared to 150 mg/kg post Isoflurane). Gain in sensitivity by the novel imaging protocol was quantitatively assessed by signal-to-noise calculations of luciferase-expressing neural stem cells grafted into mouse brains (transplantation of 3,000–300,000 cells). The optimized imaging protocol lowered the detection limit from 6,000 to 3,000 cells by a gain in signal-to-noise ratio.  相似文献   
95.
Facing energy problems, there is a strong demand for new technologies dealing with the replacement of fossil fuels. The emerging fields of biotechnology, photobiotechnology and electrobiotechnology, offer solutions for the production of fuels, energy, or chemicals using renewable energy sources (light or electrical current e.g. produced by wind or solar power) or organic (waste) substrates. From an engineering point of view both technologies have analogies and some similar challenges, since both light and electron transfer are primarily surface‐dependent. In contrast to that, bioproduction processes are typically volume dependent. To allow large scale and industrially relevant applications of photobiotechnology and electrobiotechnology, this opinion first gives an overview over the current scales reached in these areas. We then try to point out the challenges and possible methods for the scale up or numbering up of the reactors used. It is shown that the field of photobiotechnology is by now much more advanced than electrobiotechnology and has achieved industrial applications in some cases. We argue that transferring knowledge from photobiotechnology to electrobiotechnology can speed up the development of the emerging field of electrobiotechnology. We believe that a combination of scale up and numbering up, as it has been shown for several photobiotechnological reactors, may well lead to industrially relevant scales in electrobiotechnological processes allowing an industrial application of the technology in near future.  相似文献   
96.
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.  相似文献   
97.
Clear cell renal cell carcinoma (ccRCC) characterized by a tumor thrombus (TT) extending into the inferior vena cava (IVC) generally indicates poor prognosis. Nevertheless, the risk for tumor recurrence after nephrectomy and thrombectomy varies. An applicable and accurate prediction system to select ccRCC patients with TT of the IVC (ccRCC/TT) at high risk after nephrectomy is urgently needed, but has not been established up to now. To our knowledge, a possible role of microRNAs (miRs) for the development of ccRCC/TT or their impact as prognostic markers in ccRCC/TT has not been explored yet. Therefore, we analyzed the expression of the previously described onco-miRs miR-200c, miR-210, miR-126, miR-221, let-7b, miR-21, miR-143 and miR-141 in a study collective of 74 ccRCC patients. Using the expression profiles of these eight miRs we developed classification systems that accurately differentiate ccRCC from non-cancerous renal tissue and ccRCC/TT from tumors without TT. In the subgroup of 37 ccRCC/TT cases we found that miR-21, miR-126, and miR-221 predicted cancer related death (CRD) accurately and independently from other clinico-pathological features. Furthermore, a combined risk score based on the expression of miR-21, miR-126 and miR-221 was developed and showed high sensitivity and specificity to predict cancer specific survival (CSS) in ccRCC/TT. Using the combined risk score we were able to classify ccRCC/TT patients correctly into high and low risk cases. The risk stratification by the combined risk score (CRS) will benefit from further cohort validation and might have potential for clinical application as a molecular prediction system to identify high- risk ccRCC/TT patients.  相似文献   
98.
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.  相似文献   
99.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   
100.
Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild‐type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non‐hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane‐permeable auxin 1‐naphthalene acetic acid. Treatment with the auxin transport inhibitors 1‐naphthoxyacetic acid and N‐1‐naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species‐mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号