首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8021篇
  免费   728篇
  国内免费   1篇
  8750篇
  2023年   34篇
  2022年   89篇
  2021年   155篇
  2020年   92篇
  2019年   116篇
  2018年   157篇
  2017年   120篇
  2016年   256篇
  2015年   434篇
  2014年   474篇
  2013年   520篇
  2012年   687篇
  2011年   742篇
  2010年   504篇
  2009年   383篇
  2008年   546篇
  2007年   524篇
  2006年   465篇
  2005年   447篇
  2004年   422篇
  2003年   359篇
  2002年   393篇
  2001年   84篇
  2000年   72篇
  1999年   89篇
  1998年   98篇
  1997年   71篇
  1996年   52篇
  1995年   25篇
  1994年   29篇
  1993年   28篇
  1992年   26篇
  1991年   29篇
  1990年   20篇
  1989年   19篇
  1988年   19篇
  1987年   8篇
  1986年   8篇
  1985年   10篇
  1984年   14篇
  1983年   14篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1977年   7篇
  1976年   12篇
  1974年   8篇
  1973年   6篇
  1968年   6篇
  1967年   8篇
排序方式: 共有8750条查询结果,搜索用时 0 毫秒
11.
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of βNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of βNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, αNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.  相似文献   
12.
13.
M Aebi  H Hornig  C Weissmann 《Cell》1987,50(2):237-246
We have generated all possible single point mutations of the invariant 5' GT of the large beta-globin intron and determined their effect on splicing in vitro. None of the mutants prevented cleavage in the 5' splice region, but many reduced or abolished exon joining. The mutations GT----TT and GT----CT resulted in a shift of the 5' cleavage site on nucleotide upstream; in the case of the mutation GT----TT, this shift was reverted by a second site mutation within the 5' splice region. Our results suggest that the 5' cleavage site is determined not by the conserved GU sequence but by the 5' splice region as a whole, most probably via base-pairing to the 5' end of the U1 snRNA.  相似文献   
14.
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.  相似文献   
15.
Hemolysis of human erythrocytes as a function of time of exposure to 47.4-54.5 degrees C was measured and correlated to thermal transitions in the membranes of intact erythrocytes as determined by differential scanning calorimetry (DSC). Curves of hemoglobin leakage (a measure of hemolysis) as a function of time have a shoulder region exhibiting no leakage, indicative of the ability to accumulate sublethal damage (i.e., damage not sufficient to cause lysis), followed by a region of leakage approximating pseudo-first-order kinetics. Inverse leakage rates (Do) of 330-21 min were obtained from 47.4-54.5 degrees C, respectively. A relatively high activation energy of 304 +/- 22 kJ/mol was obtained for leakage, eliminating the involvement of metabolic processes but implicating a transition as the rate-limiting step. Membrane protein involvement was suggested by the very low rate (10(-2) of the rate from erythrocytes) and low activation energy (50 +/- 49 kJ/mol) of hemoglobin leakage from liposomes containing no membrane protein. A model was developed that predicts a transition temperature (Tm) for the critical target (rate-limiting step) of 60 degrees C when measured at a scan rate of 1 K/min. DSC scans were obtained from intact erythrocytes and a procedure developed to fit and remove the transition for hemoglobin denaturation which dominated the scan. Three transitions remained (transitions A, B, and C) with Tm values of 50.0, 56.8, and 63.8 degrees C, respectively. These correspond to, but occur at slightly different temperatures than, the A, B, and C transitions of isolated erythrocyte membranes in the same salt solution (Tm = 49.5, 53-58, and 65.5 degrees C, respectively). In addition, the relative enthalpies of the three transitions differ between isolated membranes and erythrocytes, suggestive of membrane alterations occurring during isolation. Thus, all analyses were conducted on DSC scans of intact erythrocytes. The B transition is very broad and probably consists of several transitions. An inflection, which is seen as a distinct peak (transition B3) in fourth-derivative curves, occurs at 60.8 degrees C and correlates well with the predicted Tm of the critical target. Ethanol (2.2%) lowers the Tm of B3 by 4.0-4.5 K, close to the shift of 3.3 K predicted from its effect on hemolysis. Glycerol (10%) has very little effect on both hemolysis and the Tm of B3, but it stabilizes spectrin (delta Tm = 1.5 K) against thermal denaturation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
16.
The interaction of Ca2+ and vanadate with fluorescein isothiocyanate (FITC) labeled sarcoplasmic reticulum (SR) Ca2+-ATPase has been studied by following the kinetics of changes in the reporter group fluorescence and equilibrium fluorescence levels. The vanadate species bound to the enzyme is clearly monomeric orthovanadate, probably H2VO4-. Vanadate binding is noncooperative, suggesting an absence of interactions between the Ca2+-ATPase subunits. The fluorescence experiments confirm the existence of a calcium-enzyme-vanadate complex (in the presence of magnesium). On the basis of the fluorescence properties of this complex, it is similar in its conformation to the calcium-enzyme complex, i.e., "E1-like" rather than "E2-like". However, Ca2+ binds to the enzyme-vanadate complex via sites that are only accessible from the interior of the SR vesicles. The complex Ca2E*Van, which is rapidly formed, isomerizes very slowly (t1/2 approximately 1 min) to the stable ternary complex. The mutual destabilization between bound vanadate and two bound Ca2+ ions is only 1.6 kcal/mol, much smaller than that produced by the interaction of calcium and phosphate.  相似文献   
17.
Summary Chronic myelogenous leukemia (CML) patients in chronic phase display compromised lymphokine-activated killer (LAK) cell induction, which is partly restored after therapy with interferon . However, the relative resistance of the leukemic cells from these patients to autologous or allogeneic LAK lysis is not affected by this treatment. In an attempt to render CML cells more susceptible to lysis or cytostasis, they were precultured in serum-free medium with or without recombinant growth factors. In eight patients studied, interleukin-3 (IL-3) significantly enhanced the spontaneous short-term (6-day) proliferation of CML cells, with retention of ability to form colonies in methylcellulose. Culture in either medium alone or IL-3 led to a significant enrichment of CD14+ and CD33+ cells but to a reduction in CD34+ cells. In contrast, culture of the same cells in IL-2 (to generate autologous LAK activity) resulted in a loss of CD14+ and CD33+ as well as CD34+ cells but in a significant increase in CD3+ and CD56+ cells. Despite similarities in their phenotypes, IL-3 cultured cells but not those cultured in medium alone acquired susceptibility to lysis by the IL-2-cultured autologous LAK cells. These results may have significance for the design of novel combination immunotherapy in CML.This work was supported in part by the Deutsche Forschungsgemeinschaft (SFB 120)  相似文献   
18.
Specific resistance of Mx+ mice to influenza virus is due to the interferon (IFN)-induced protein Mx. The Mx gene consists of 14 exons that are spread over at least 55 kilobase pairs of DNA. Surprisingly, the Mx gene promoter is induced as efficiently by Newcastle disease virus as it is by IFN. The 5' boundary of the region required for maximal induction by both IFN and Newcastle disease virus is located about 140 base pairs upstream of the cap site. This region contains five elements of the type GAAANN, which occurs in all IFN- and virus-inducible promoters. The consensus sequence purine-GAAAN(N/-)GAAA(C/G)-pyrimidine is found in all IFN-inducible promoters.  相似文献   
19.
M Peter  E Heitlinger  M Hner  U Aebi    E A Nigg 《The EMBO journal》1991,10(6):1535-1544
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. At the onset of mitosis it depolymerizes, presumably in response to phosphorylation of the lamin proteins. Recently, cdc2 kinase, a major regulator of the eukaryotic cell cycle, was shown to induce lamina depolymerization when incubated with isolated nuclei. Here, we have analysed the structural consequences of lamin phosphorylation by cdc2 kinase using lamin head-to-tail polymers reconstituted in vitro from bacterially expressed chicken lamin B2 protein as a substrate. The effects of phosphorylation were monitored by both a pelleting assay and electron microscopy. We show that lamin B2 head-to-tail polymers disassemble in response to phosphorylation of specific sites that are phosphorylated also during mitosis in vivo. These sites are located within SP/TP motifs N- and C-terminal to the central alpha-helical rod domain of lamin proteins. Subsequent dephosphorylation of these sites by purified phosphatase 1 allows reformation of lamin head-to-tail polymers. The relative importance of N- and C-terminal phosphorylation sites for controlling the assembly state of nuclear lamins was assessed by mutational analysis. Polymers formed of lamin proteins carrying mutations in the C-terminal phosphoacceptor motif could still be disassembled by cdc2 kinase. In contrast, a single point mutation in the N-terminal site (Ser16----Ala) rendered head-to-tail polymers resistant to disassembly. These results emphasize the importance of the N-terminal end domain for lamin head-to-tail polymerization in vitro, and they demonstrate that phosphorylation-dephosphorylation is sufficient to control the longitudinal assembly of lamin B2 dimers.  相似文献   
20.
Summary A single-strand conformational polymorphism found in the DNA of a patient with neurofibromatosis 1 (NF1) was shown to be caused by a deletion of a CCACC or CACCT sequence and an adjacent transversion, located about 500 base pairs downstream from the region that codes for a functional domain of the NF1 gene product. This mutation could also be detected in the patient and in his affected daughter by heteroduplex analysis. The deletion removes the proximal half of a small potential stem-loop and interrupts the reading frame in exon 1. A severely truncated protein with a grossly altered carboxy terminus lacking one third of its sequence is expected to be formed from the mutant allele.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号