首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   8篇
  89篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
71.
Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly up-regulated following exposure to rotting senita tissue while Cyp4D10 was highly up-regulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, although this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation.  相似文献   
72.
Speciation can occur through the presence of reproductive isolation barriers that impede mating, restrict cross-fertilization, or render inviable/sterile hybrid progeny. The D. willistoni subgroup is ideally suited for studies of speciation, with examples of both allopatry and sympatry, a range of isolation barriers, and the availability of one species complete genome sequence to facilitate genetic studies of divergence. D. w. willistoni has the largest geographic distribution among members of the Drosophila willistoni subgroup, spanning from Argentina to the southern United States, including the Caribbean islands. A subspecies of D. w. willistoni, D. w. quechua, is geographically separated by the Andes mountain range and has evolved unidirectional sterility, in that only male offspring of D. w. quechua females × D. w. willistoni males are sterile. Whether D. w. willistoni flies residing east of the Andes belong to one or more D. willistoni subspecies remains unresolved. Here we perform fecundity assays and show that F1 hybrid males produced from crosses between different strains found in Central America, North America, and northern Caribbean islands are reproductively isolated from South American and southern Caribbean island strains as a result of unidirectional hybrid male sterility. Our results show the existence of a reproductive isolation barrier between the northern and southern strains and suggest a subdivision of the previously identified D. willistoni willistoni species into 2 new subspecies.  相似文献   
73.
74.
The effectiveness of selection for positive and negative phototactic behavior in populations of Drosophila melanogaster heterozygous for various multiple inversions was compared using the method of realized heritability. Selection in the presence of FM6, SM1 or TM3 alone was as effective as in populations carrying no inversions. However, the presence of FM6 and TM3 together reduced the effectiveness of selection for photopositive behavior and FM6 and SM1 and TM3 restricted the response to selection for negative phototactic behavior. The results are discussed in terms of the organization of genes influencing phototactic behavior in this species.  相似文献   
75.
Biological stoichiometry provides a mechanistic theory linking cellular and biochemical features of co‐evolving biota with constraints imposed by ecosystem energy and nutrient inputs. Thus, understanding variation in biomass carbon : nitrogen : phosphorus (C : N : P) stoichiometry is a major priority for integrative biology. Among various factors affecting organism stoichiometry, differences in C : P and N : P stoichiometry have been hypothesized to reflect organismal P‐content because of altered allocation to P‐rich ribosomal RNA at different growth rates (the growth rate hypothesis, GRH). We tested the GRH using data for microbes, insects, and crustaceans and we show here that growth, RNA content, and biomass P content are tightly coupled across species, during ontogeny, and under physiological P limitation. We also show, however, that this coupling is relaxed when P is not limiting for growth. The close relationship between P and RNA contents indicates that ribosomes themselves represent a biogeochemically significant repository of P in ecosystems and that allocation of P to ribosome generation is a central process in biological production in ecological systems.  相似文献   
76.
Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies.  相似文献   
77.
78.
Good JM  Ross CL  Markow TA 《Molecular ecology》2006,15(8):2253-2260
Female remating frequency and sperm allocation patterns can strongly influence levels of sperm competition and reproductive success in natural populations. In the laboratory, Drosophila mojavensis males transfer very few sperm per copulation and females remate often, suggesting multiple paternity should be common in nature. Here, we examine female sperm loads, incidence of multiple paternity, and sperm utilization by genotyping progeny from 20 wild-caught females at four highly polymorphic microsatellite loci. Based on indirect paternity analyses of 814 flies, we found evidence for high levels of multiple paternity coupled with relatively low reproductive output, consistent with the high levels of female remating predicted in this sperm-limited species. Overall, we found little evidence for last -- male sperm precedence though some temporal variation in sperm utilization was observed, consistent with laboratory findings.  相似文献   
79.
Nucleotide sequences from the mitochondrial cytochrome c oxidase subunit I (COI) gene, comprising the standard barcode segment, were used to examine genetic differentiation, systematics, and population structure of cactus flies (Diptera: Neriidae: Odontoloxozus) from Mexico and south‐western USA. Phylogenetic analyses revealed that samples of Odontoloxozus partitioned into two distinct clusters: one comprising the widely distributed Odontoloxozus longicornis (Coquillett) and the other comprising Odontoloxozus pachycericola Mangan & Baldwin, a recently described species from the Cape Region of the Baja California peninsula, which we show is distributed northward to southern California, USA. A mean Kimura two‐parameter genetic distance of 2.8% between O. longicornis and O. pachycericola, and eight diagnostic nucleotide substitutions in the COI gene segment, are consistent with a species‐level separation, thus providing the first independent molecular support for recognizing O. pachycericola as a distinct species. We also show that the only external morphological character considered to separate adults of the two species (number of anepisternal bristles) varies with body size and is therefore uninformative for making species assignments. Analysis of molecular variance indicated significant structure among populations of O. longicornis from three main geographical areas, (1) Arizona, USA and Sonora, Mexico; (2) Santa Catalina Island, California, USA; and (3) central Mexico (Querétaro and Guanajuato), although widely‐separated populations from Arizona and Sonora showed no evidence of structure. A TCS haplotype network showed no shared haplotypes of O. longicornis among the three main regions. The potential roles of vicariance and isolation‐by‐distance in restricting gene flow and promoting genetic differentiation and speciation in Odontoloxozus are discussed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 245–256.  相似文献   
80.
Pfeiler E  Ngo NM  Markow TA 《Hereditas》2005,142(2005):1-6
Although Drosophila species provide important model systems for evolutionary biology, the ecologies and natural histories of most species are insufficiently characterized to permit predictions with respect to issues such as population genetic structure. A notable exception is the group of cactophilic Drosophila endemic to the Sonoran Desert of North America. One of these species, D. nigrospiracula, exhibits no population subdivision anywhere in its range. Here we present evidence suggesting that the timing of mating in relation to dispersal contributes to the panmixia observed in this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号