首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1461篇
  免费   107篇
  2023年   9篇
  2022年   22篇
  2021年   26篇
  2020年   31篇
  2019年   26篇
  2018年   27篇
  2017年   29篇
  2016年   48篇
  2015年   66篇
  2014年   81篇
  2013年   94篇
  2012年   131篇
  2011年   118篇
  2010年   95篇
  2009年   67篇
  2008年   93篇
  2007年   73篇
  2006年   75篇
  2005年   77篇
  2004年   64篇
  2003年   48篇
  2002年   57篇
  2001年   23篇
  2000年   13篇
  1999年   21篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   12篇
  1982年   5篇
  1980年   3篇
  1979年   3篇
  1973年   5篇
  1971年   3篇
  1970年   2篇
  1969年   6篇
  1960年   2篇
  1959年   2篇
排序方式: 共有1568条查询结果,搜索用时 910 毫秒
101.
Laboratory Animal Management Assistant (LAMA) is an internet-based system for tracking large laboratory mouse colonies. It has a user-friendly interface with powerful search capabilities that ease day-to-day tasks such as tracking breeding cages and weaning litters. LAMA was originally developed to manage hundreds of new mouse strains generated by a large functional genomics program, the Pleiades Promoter Project (http://www.pleiades.org). The software system has proven to be highly flexible, suitable for diverse management approaches to mouse colonies. It allows custom tagging and grouping of animals, simplifying project-specific handling and access to data. Finally, LAMA was developed in close collaboration with mouse technicians to ease the transition from paper- or Excel-based management systems to computerized tracking, allowing data export in a popular spreadsheet format and automatic printing of cage cards. LAMA is an open-access software tool, freely available to the research community at http://launchpad.net/mousedb.  相似文献   
102.
Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent‐based inferences about demographic processes to reconstruct the population histories of two co‐distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation.  相似文献   
103.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological functions. A highly selective and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) method was developed for the determination of LPAs (16:0 LPA, 18:0 LPA, 18:1 LPA, 20:4 LPA) in rat brain cryosections. After partitioning the LPAs from other lipophilic material present in the tissue with a liquid–liquid extraction, a reversed-phase column and ion pair technique was used for separating analytes with a gradient elution. An internal standard (17:0 LPA) was included in the analysis. Detection and quantification of the LPAs were carried out with a triple quadrupole mass spectrometer using negative electrospray ionization (ESI) and multiple reaction monitoring (MRM). The artificial formation of LPAs from lysophosphatidylcholines during the sample preparation procedure and instrumentation was carefully studied during the method development. The method was validated; acceptable selectivity, accuracy, precision, recovery, and stability were obtained for concentrations within the calibration curve range of 0.02–1.0 μM for LPAs. The quantification limit of the assay was 54 fmol injected into column for each LPAs. The method was applied to comparative studies of LPA levels in rat brain cryosections after the various chemical pre-treatments of the sections.  相似文献   
104.
Recombinant Escherichia coli cells, over-expressing cyclopentanone monooxygenase activity, were immobilized in polyelectrolyte complex capsules, made of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine), CaCl2 and NaCl. More than 90% of the cell viability was preserved during the encapsulation process. Moreover, the initial enzyme activity was fully maintained within encapsulated cells while it halved in free cells. Both encapsulated and free cells reached the end point of the Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one to 4,9-dioxabicyclo[4.2.1]non-7-en-3-one at the same time (48 h). Similarly, the enantiomeric excess above 94% was identical for encapsulated and free cells.  相似文献   
105.
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer’s disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1−/− cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer’s disease and supports the role of lipid rafts in these processes.  相似文献   
106.
The exact closed-form solution to the Michaelis-Menten equation is expressed in terms of the Lambert W(x) function. However, the utility of this solution is limited because the W(x) function is not widely available in curve-fitting software. Based on various approximations to the W(x) function, different explicit equations expressed in terms of the elementary functions are proposed here as useful shortcuts to fit time depletion of substrate concentration directly to progress curves using commonly available nonlinear regression computer programs. The results are compared with those obtained by fitting other algebraic equations that have been proposed previously in the literature.  相似文献   
107.

Background  

After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus) that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population) and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation.  相似文献   
108.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   
109.

Background  

Bacterial bodies (colonies) can develop complex patterns of color and structure. These patterns may arise as a result of both colony-autonomous developmental and regulatory processes (self-patterning) and environmental influences, including those generated by neighbor bodies. We have studied the interplay of intra-colony signaling (self-patterning) and inter-colony influences in related clones of Serratia rubidaea grown on rich media.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号