排序方式: 共有159条查询结果,搜索用时 15 毫秒
51.
52.
Local production of chemokines and prostaglandin E2 in the acute, chronic and recovery phase of murine experimental colitis 总被引:2,自引:0,他引:2
Increased levels of chemokines and prostaglandins have been reported in patients with inflammatory bowel disease, although their changes during disease development are less understood. The aim of this study was to investigate the local production of nine selected chemokines and prostaglandin E(2) (PGE(2)) to elucidate their role in colitis progression in BALB/c and C57BL/6 mice exposed to dextran sulphate sodium. The acute inflammation in both strains was accompanied by a significant up-regulation of CXCL1, CXCL2/3, CXCL10, CCL2, CCL4 and CCL22 and a downregulation of PGE(2). In the recovery phase in BALB/c, one-week post-DSS, PGE(2) levels were significantly increased with a concomitant downregulation of CXCL1, CXCL2/3, CXCL10, CCL2, and CCL4. In contrast, in C57BL/6 mice CXCL1, CXCL2/3, CXCL10, CCL2, CCL3 and CCL4 production remained high during the chronic phase, without any up-regulation of PGE(2). In addition, CCL5 was significantly increased at d26 and 33 compared to d5. Interestingly, the number of macrophages was significantly increased during the acute phase, whereas T cells were significantly increased in both the acute and chronic phase in C57BL/6 mice. Thus, our results show that chemokines are produced in a dynamic manner during colitis progression. 相似文献
53.
Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling 总被引:2,自引:0,他引:2
Meinander A Runchel C Tenev T Chen L Kim CH Ribeiro PS Broemer M Leulier F Zvelebil M Silverman N Meier P 《The EMBO journal》2012,31(12):2770-2783
Caspases have been extensively studied as critical initiators and executioners of cell death pathways. However, caspases also take part in non-apoptotic signalling events such as the regulation of innate immunity and activation of nuclear factor-κB (NF-κB). How caspases are activated under these conditions and process a selective set of substrates to allow NF-κB signalling without killing the cell remains largely unknown. Here, we show that stimulation of the Drosophila pattern recognition protein PGRP-LCx induces DIAP2-dependent polyubiquitylation of the initiator caspase DREDD. Signal-dependent ubiquitylation of DREDD is required for full processing of IMD, NF-κB/Relish and expression of antimicrobial peptide genes in response to infection with Gram-negative bacteria. Our results identify a mechanism that positively controls NF-κB signalling via ubiquitin-mediated activation of DREDD. The direct involvement of ubiquitylation in caspase activation represents a novel mechanism for non-apoptotic caspase-mediated signalling. 相似文献
54.
55.
Fornuskova D Brantova O Tesarova M Stiburek L Honzik T Wenchich L Tietzeova E Hansikova H Zeman J 《Biochimica et biophysica acta》2008,1782(5):317-325
The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits. 相似文献
56.
Yongming Du Gefei Liu Yinxia Yan Dongyang Huang Wenhong Luo Marketa Martinkova Petr Man Toru Shimizu 《Biometals》2013,26(5):839-852
The heme-based oxygen-sensor phosphodiesterase from Escherichia coli (Ec DOS), is composed of an N-terminal heme-bound oxygen sensing domain and a C-terminal catalytic domain. Oxygen (O2) binding to the heme Fe(II) complex in Ec DOS substantially enhances catalysis. Addition of hydrogen sulfide (H2S) to the heme Fe(III) complex in Ec DOS also remarkably stimulates catalysis in part due to the heme Fe(III)–SH and heme Fe(II)–O2 complexes formed by H2S. In this study, we examined the roles of the heme distal amino acids, M95 (the axial ligand of the heme Fe(II) complex) and R97 (the O2 binding site in the heme Fe(II)–O2 complex) of the isolated heme-binding domain of Ec DOS (Ec DOS-PAS) in the binding of H2S under aerobic conditions. Interestingly, R97A and R97I mutant proteins formed an oxygen-incorporated modified heme, verdoheme, following addition of H2S combined with H2O2 generated by the reactions. Time-dependent mass spectroscopic data corroborated the findings. In contrast, H2S did not interact with the heme Fe(III) complex of M95H and R97E mutants. Thus, M95 and/or R97 on the heme distal side in Ec DOS-PAS significantly contribute to the interaction of H2S with the Fe(III) heme complex and also to the modification of the heme Fe(III) complex with reactive oxygen species. Importantly, mutations of the O2 binding site of the heme protein converted its function from oxygen sensor to that of a heme oxygenase. This study establishes the novel role of H2S in modifying the heme iron complex to form verdoheme with the aid of reactive oxygen species. 相似文献
57.
58.
59.
Gharbi SI Zvelebil MJ Shuttleworth SJ Hancox T Saghir N Timms JF Waterfield MD 《The Biochemical journal》2007,404(1):15-21
The PI3Ks (phosphatidylinositol 3-kinases) regulate cellular signalling networks that are involved in processes linked to the survival, growth, proliferation, metabolism and specialized differentiated functions of cells. The subversion of this network is common in cancer and has also been linked to disorders of inflammation. The elucidation of the physiological function of PI3K has come from pharmacological studies, which use the enzyme inhibitors Wortmannin and LY294002, and from PI3K genetic knockout models of the effects of loss of PI3K function. Several reports have shown that LY294002 is not exclusively selective for the PI3Ks, and could in fact act on other lipid kinases and additional apparently unrelated proteins. Since this inhibitor still remains a drug of choice in numerous PI3K studies (over 500 in the last year), it is important to establish the precise specificity of this compound. We report here the use of a chemical proteomic strategy in which an analogue of LY294002, PI828, was immobilized onto epoxy-activated Sepharose beads. This affinity material was then used as a bait to fish-out potential protein targets from cellular extracts. Proteins with high affinity for immobilized PI828 were separated by one-dimensional gel electrophoresis and identified by liquid chromatography-tandem MS. The present study reveals that LY294002 not only binds to class I PI3Ks and other PI3K-related kinases, but also to novel targets seemingly unrelated to the PI3K family. 相似文献
60.
Understanding how genetic variation is maintained in a metapopulation is a longstanding problem in evolutionary biology. Historical resurveys of polymorphisms have offered efficient insights about evolutionary mechanisms, but are often conducted on single, large populations, neglecting the more comprehensive view afforded by considering all populations in a metapopulation. Here, we resurveyed a metapopulation of spotted salamanders (Ambystoma maculatum) to understand the evolutionary drivers of frequency variation in an egg mass colour polymorphism. We found that this metapopulation was demographically, phenotypically and environmentally stable over the last three decades. However, further analysis revealed evidence for two modes of evolution in this metapopulation—genetic drift and balancing selection. Although we cannot identify the balancing mechanism from these data, our findings present a clear view of contemporary evolution in colour morph frequency and demonstrate the importance of metapopulation-scale studies for capturing a broad range of evolutionary dynamics. 相似文献