首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  23篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
A simple and efficient regeneration protocol was developed for watermelon from cotyledonary node explants excised from 7-day-old in vitro grown seedlings. This study describes the effect of amino acids and polyamines (PAs) along with plant growth regulators (PGRs) on multiple shoot induction and rooting. The highest number of multiple shoots (46.43 shoots/explant) was obtained from cotyledonary node and they were also elongated (6.3 cm/shoot) on MS medium supplemented with 1 mg l??1 N 6 –Benzyladenine (BA), 5 mg l??1 leucine, and 10 mg l??1 spermidine. The elongated shoots developed profuse roots (23.03 roots/shoot) in MS medium containing 1 mg l??1 indole-3-butyric acid (IBA), 5 mg l??1 isoleucine, and 10 mg l??1 putrescine. All the rooted plantlets were successfully hardened and acclimatized in the greenhouse with a survival rate of 98%. The present study described an efficient method to obtain a 1.5-fold increase in the number of shoots, compared with the available regeneration protocols for watermelon. The plants developed in this study showed fivefold higher photosynthetic pigments compared to the control plants. The genetic fidelity of the regenerated plants was evaluated by SCoT and RAPD marker analyses, and banding patterns confirmed the true-to-type nature of in vitro regenerated plants.  相似文献   
12.
Journal of Plant Biochemistry and Biotechnology - Transient gene expression utilizing syringe mediated agro infiltration offers a simple yet efficient technique for various transgenic applications....  相似文献   
13.

Key message

An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant.

Abstract

Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA® and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.  相似文献   
14.
The utility of hairy root cultures to produce valuable phytochemicals could be improved by repartitioning more of the desired phytochemical into the spent culture media, thereby simplifying the bioprocess engineering associated with the purification of the desired phytochemical. The majority of nicotine produced by tobacco hairy root cultures is retained within roots, with lesser amounts exuded into the spent culture media. Reduced expression of the tobacco nicotine uptake permease (NUP1) results in significantly more nicotine accumulating in the media. Thus, NUP1-reduced expression lines provide a genetic means to repartition more nicotine into the culture media. The present study examined a wild type and a NUP1-reduced expression hairy root line during a variety of treatments to identify culture conditions that increased nicotine accumulation in the media. The NUP1-reduced expression line grew faster, used less oxygen, and exuded more nicotine into the media. Basification of the culture media associated with root growth resulted in a dramatic reduction in nicotine accumulation levels in the media, which was reversed by decreasing the pH of the media. Kinetic analysis of hairy root growth and nicotine accumulation in the media revealed a potential improvement in nicotine yields in the media by stimulating the branching of tobacco hairy roots.  相似文献   
15.
The influence of cytokinins and culture conditions including medium volume, harvest time and elicitation with abiotic elicitors (SA/MeJ) have been studied for the optimal production of biomass and withanolides in the multiple shoot culture of Withania somnifera. Elicitation of shoot inoculum mass (2 g l?l FW) with SA at 100 μM in the presence of 0.6 mg l?l BA and 20 mg l?l spermidine for 4 h exposure time at the 4th week in 20 ml liquid medium recorded higher withanolides production (withanolides A [8.48 mg g?l DW], withanolides B [15.47 mg g?l DW], withaferin A [29.55 mg g?l DW] and withanone [23.44 mg g?l DW]), which were 1.14 to 1.18-fold higher than elicitation with MeJ at 100 μM after 5 weeks of culture. SA-elicited cultures did not exhibit much variation in biomass accumulation when compared to control. This cytokinin induces and SA-elicited multiple shoot culture protocol provides a potential alternative for the optimal production of biomass and withanolides utilizing liquid culture.  相似文献   
16.

The present study investigates the potentiality of Sodium nitroprusside (SNP) to enhance the efficiency of genetic transformation in soybean. Half-seeds cultured on co-cultivation [4.44 μM N6-benzyl adenine (BA) and 30 μM SNP]; shoot induction (4.44 μM BA and 30 μM SNP) and rooting medium [4.93 μM indole 3-butyric acid (IBA) and 30 μM SNP] exhibited improved transformation efficiency (34.6%) in contrast to the regeneration system devoid of SNP (23%). The putatively transformed plants were evaluated by GUS assay and molecular analysis like PCR and Southern hybridization. Furthermore, the transformation system developed herein entails a shorter period (75-days) for developing plantlets from half-seeds of soybean. The outcome of this study revealed that the addition of SNP increased regeneration efficiency of plants, which translated to improved transformation efficiency in soybean.

  相似文献   
17.
Plant Cell, Tissue and Organ Culture (PCTOC) - A proficient and reliable in vitro plant regeneration protocol was established for pea by utilizing cotyledonary node as an explants, which excised...  相似文献   
18.
In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants.  相似文献   
19.

Key message

An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant.

Abstract

Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301–bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.
  相似文献   
20.
A simple and efficient regeneration protocol was established for soybean [Glycine max (L.) Merrill]. Cotyledonary node explants from 7-day-old in vitro seedlings were used as explants. The effect of different plant growth regulators [N 6 –benzyladenine (BA), kinetin (KT), thidiazuron (TDZ), gibberellic acid (GA3), zeatin riboside (ZTR), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA)] along with polyamines (Spermidine, spermine, and putrescine) were investigated at different stages of regeneration using direct organogenesis system. Exogenous spermidine (137.69 μM) in shoot induction medium containing optimal BA concentration (2.22 μM) induced maximum number of shoots (39.02 shoots/explant) compared to BA (2.22 μM) alone. Regenerated shoots elongated well in shoot elongation medium containing GA3 (1.45 μM) and spermine (74.13 μM), and developed profuse roots in root induction medium containing putrescine (62.08 μM). Rooted plantlets were successfully hardened and acclimatized with a survival rate of 92 %. The amenability of the standardized protocol using cultivar PK 416 was tested on four more Indian soybean cultivars JS 90–41, Hara soy, Co1, and Co2 of which PK 416 was found to be the best responding cultivar, with a maximum of 96.94 % shoot induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号