首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35632篇
  免费   3069篇
  国内免费   19篇
  38720篇
  2023年   112篇
  2022年   317篇
  2021年   594篇
  2020年   359篇
  2019年   475篇
  2018年   595篇
  2017年   523篇
  2016年   924篇
  2015年   1565篇
  2014年   1695篇
  2013年   2068篇
  2012年   2805篇
  2011年   2871篇
  2010年   1784篇
  2009年   1675篇
  2008年   2359篇
  2007年   2415篇
  2006年   2256篇
  2005年   2103篇
  2004年   2082篇
  2003年   1926篇
  2002年   1868篇
  2001年   406篇
  2000年   273篇
  1999年   404篇
  1998年   479篇
  1997年   340篇
  1996年   306篇
  1995年   272篇
  1994年   238篇
  1993年   255篇
  1992年   231篇
  1991年   174篇
  1990年   156篇
  1989年   172篇
  1988年   139篇
  1987年   125篇
  1986年   100篇
  1985年   136篇
  1984年   160篇
  1983年   111篇
  1982年   127篇
  1981年   114篇
  1980年   96篇
  1979年   57篇
  1978年   72篇
  1977年   65篇
  1976年   42篇
  1974年   35篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)alpha-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)alpha-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)alpha-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 A of the lipid phosphate group (with an accuracy of +/-3 A). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 A penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)alpha-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism.  相似文献   
922.
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (35). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions.  相似文献   
923.
As a continuation of our efforts to discover and develop apoptosis inducing N-methyl-4-(4-methoxyanilino)quinazolines as novel anticancer agents, we explored substitution at the 5-, 6-, 7-positions of the quinazoline and replacement of the quinazoline by other nitrogen-containing heterocycles. A small group at the 5-position was found to be well tolerated. At the 6-position a small group like an amino was preferred. Substitution at the 7-position was tolerated much less than at the 6-position. Replacing the carbon at the 8-position or both the 5- and 8-positions with nitrogen led to about 10-fold reductions in potency. Replacement of the quinazoline ring with a quinoline, a benzo[d][1,2,3]triazine, or an isoquinoline ring showed that the nitrogen at the 1-position is important for activity, while the carbon at the 2-position can be replaced by a nitrogen and the nitrogen at the 3-position can be replaced by a carbon. Through the SAR study, several 5- or 6-substituted analogs, such as 2a and 2c, were found to have potencies approaching that of lead compound N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine (1g, EP128495, MPC-6827, Azixa®).  相似文献   
924.
Scale-dependent interactions and community structure on cobble beaches   总被引:4,自引:0,他引:4  
Recent theory suggests that scale-dependent interaction between facilitation and competition can generate spatial structure in ecological communities. The application of this hypothesis, however, has been limited to systems with little underlying heterogeneity. We evaluated this prediction in a plant community along an intertidal stress gradient on cobble beaches in Rhode Island, USA. Prior studies have shown that Spartina alterniflora facilitates a forb-dominated community higher in the intertidal by modifying the shoreline environment. We tested the hypothesis that, at a smaller scale, Spartina competitively excludes forb species, explaining their marked absence within the lower Spartina zone. Transplant experiments showed forb species grow significantly better in the Spartina zone when neighbours were removed. Removal of the Spartina canopy led to a massive emergence of annual forbs, showing that competition limits local occupation. These findings indicate that interaction of large-scale facilitation and small-scale competition drives plant zonation on cobble beaches. This study is the first to provide empirical evidence of scale-dependent interactions between facilitation and competition spatially structuring communities in heterogeneous environments.  相似文献   
925.
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.  相似文献   
926.
Human health risk estimates for sites with contaminated soils are often based on the assumption that the outdoor soil sieved to < 250 μm is a reasonable surrogate for predicting exposures via incidental soil ingestion. In vitro bioaccessibility tests are also increasingly used to “improve” ingestion exposure predictions of contaminants at different sites. However, when considered in terms of factors that influence desorption of contaminants from particles and uptake into humans, available studies indicate that current “standards of practice” with respect to assays of oral bioaccessibility have a number of significant shortcomings, at least in Canada. These shortcomings are discussed and various factors that influence the assessment of bioaccessibility of contaminants in soils are examined. We finish with proposing some minimum data submission requirements to support the application and relevance of bioaccessibility assays at contaminated sites.  相似文献   
927.
Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.  相似文献   
928.
Bighead and silver carp are well established in the Mississippi River basin following their accidental introduction in the 1980s. Referred to collectively as Asian carp, these species are filter feeders consuming phytoplankton and zooplankton. We examined diet overlap and electivity of Asian carp and three native filter feeding fishes, bigmouth buffalo, gizzard shad, and paddlefish, in backwater lakes of the Illinois and Mississippi rivers. Rotifers, Keratella spp., Brachionus spp., and Trichocerca spp., were the most common prey items consumed by Asian carp and gizzard shad, whereas crustacean zooplankton were the preferred prey of paddlefish. Bigmouth buffalo diet was broad, including both rotifers and crustacean zooplankton. Dietary overlap with Asian carp was greatest for gizzard shad followed by bigmouth buffalo, but we found little diet overlap for paddlefish. Diet similarity based on taxonomy correlated strongly with diet similarity based on size suggesting filtration efficiency influenced the overlap patterns we observed. Although rotifers were the most common prey item consumed by both bighead and silver carp, we found a negative relation between silver carp CPUE and cladoceran density. The competitive effect of Asian carp on native fishes may be forestalled because of the high productivity of Illinois and Mississippi river habitats, yet the potential for negative consequences of Asian carp in less productive ecosystems, including Lake Michigan, should not be underestimated.  相似文献   
929.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号