首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35583篇
  免费   3060篇
  国内免费   19篇
  2023年   99篇
  2022年   282篇
  2021年   593篇
  2020年   359篇
  2019年   475篇
  2018年   595篇
  2017年   524篇
  2016年   925篇
  2015年   1566篇
  2014年   1695篇
  2013年   2070篇
  2012年   2803篇
  2011年   2868篇
  2010年   1783篇
  2009年   1675篇
  2008年   2358篇
  2007年   2415篇
  2006年   2257篇
  2005年   2103篇
  2004年   2082篇
  2003年   1925篇
  2002年   1868篇
  2001年   405篇
  2000年   272篇
  1999年   404篇
  1998年   474篇
  1997年   340篇
  1996年   305篇
  1995年   272篇
  1994年   237篇
  1993年   255篇
  1992年   232篇
  1991年   174篇
  1990年   155篇
  1989年   171篇
  1988年   140篇
  1987年   126篇
  1986年   101篇
  1985年   136篇
  1984年   163篇
  1983年   111篇
  1982年   127篇
  1981年   114篇
  1980年   96篇
  1979年   57篇
  1978年   72篇
  1977年   65篇
  1976年   42篇
  1974年   35篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
981.
Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h2median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.  相似文献   
982.
Ensemble Förster resonance energy transfer (FRET) results can be analyzed in a variety of ways. Due to experimental artifacts, the results obtained from different analysis approaches are not always the same. To determine the optimal analysis approach to use for Nanodrop fluorometry, we have performed both ensemble and single-molecule FRET studies on oligomers of double-stranded DNA. We compared the single-molecule FRET results with those obtained using various ensemble FRET analysis approaches. This comparison shows that for Nanodrop fluorometry, analyzing the increase of the acceptor fluorescence is less likely to introduce errors in estimates of FRET efficiencies compared with analyzing the fluorescence intensity of the donor in the absence and presence of the acceptor.  相似文献   
983.
Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.  相似文献   
984.
Several lines of evidence suggest that genome-wide association studies (GWASs) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods for identifying a larger proportion of SNPs are currently lacking. Here, we present a genetic-pleiotropy-informed method for improving gene discovery with the use of GWAS summary-statistics data. We applied this methodology to identify additional loci associated with schizophrenia (SCZ), a highly heritable disorder with significant missing heritability. Epidemiological and clinical studies suggest comorbidity between SCZ and cardiovascular-disease (CVD) risk factors, including systolic blood pressure, triglycerides, low- and high-density lipoprotein, body mass index, waist-to-hip ratio, and type 2 diabetes. Using stratified quantile-quantile plots, we show enrichment of SNPs associated with SCZ as a function of the association with several CVD risk factors and a corresponding reduction in false discovery rate (FDR). We validate this “pleiotropic enrichment” by demonstrating increased replication rate across independent SCZ substudies. Applying the stratified FDR method, we identified 25 loci associated with SCZ at a conditional FDR level of 0.01. Of these, ten loci are associated with both SCZ and CVD risk factors, mainly triglycerides and low- and high-density lipoproteins but also waist-to-hip ratio, systolic blood pressure, and body mass index. Together, these findings suggest the feasibility of using genetic-pleiotropy-informed methods for improving gene discovery in SCZ and identifying potential mechanistic relationships with various CVD risk factors.  相似文献   
985.
Small inorganic assemblies of alternating ferrous/ferric iron and sulphide ions, so-called iron–sulphur (Fe–S) clusters, are possibly nature’s most ancient prosthetic groups. One of the early actors in Fe–S cluster biosynthesis is a protein complex composed of a cysteine desulphurase, Nfs1, and its functional binding partner, Isd11. Although the essential function of Nfs1·Isd11 in the liberation of elemental sulphur from free cysteine is well established, little is known about its structure. Here, we provide evidence that shows Isd11 has a profound effect on the oligomeric state of Nfs1.  相似文献   
986.
Long-range migrations and the resulting admixtures between populations have been important forces shaping human genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER, which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.  相似文献   
987.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   
988.
The tyrosine‐sulfated peptides PSKα and PSY1 bind to specific leucine‐rich repeat surface receptor kinases and control cell proliferation in plants. In a reverse genetic screen, we identified the phytosulfokine (PSK) receptor PSKR1 as an important component of plant defense. Multiple independent loss‐of‐function mutants in PSKR1 are more resistant to biotrophic bacteria, show enhanced pathogen‐associated molecular pattern responses and less lesion formation after infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. By contrast, pskr1 mutants are more susceptible to necrotrophic fungal infection with Alternaria brassicicola, show more lesion formation and fungal growth which is not observed on wild‐type plants. The antagonistic effect on biotrophic and necrotrophic pathogen resistance is reflected by enhanced salicylate and reduced jasmonate responses in the mutants, suggesting that PSKR1 suppresses salicylate‐dependent defense responses. Detailed analysis of single and multiple mutations in the three paralogous genes PSKR1, ‐2 and PSY1‐receptor (PSY1R) determined that PSKR1 and PSY1R, but not PSKR2, have a partially redundant effect on plant immunity. In animals and plants, peptide sulfation is catalyzed by a tyrosylprotein sulfotransferase (TPST). Mutants lacking TPST show increased resistance to bacterial infection and increased susceptibility to fungal infection, mimicking the triple receptor mutant phenotypes. Feeding experiments with PSKα in tpst‐1 mutants partially restore the defense‐related phenotypes, indicating that perception of the PSKα peptide has a direct effect on plant defense. These results suggest that the PSKR subfamily integrates growth‐promoting and defense signals mediated by sulfated peptides and modulates cellular plasticity to allow flexible adjustment to environmental changes.  相似文献   
989.
The bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) are essential enzymes that control the topological state of DNA during replication. The high degree of conservation in the ATP-binding pockets of these enzymes make them appealing targets for broad-spectrum inhibitor development. A pyrrolopyrimidine scaffold was identified from a pharmacophore-based fragment screen with optimization potential. Structural characterization of inhibitor complexes conducted using selected GyrB/ParE orthologs aided in the identification of important steric, dynamic and compositional differences in the ATP-binding pockets of the targets, enabling the design of highly potent pyrrolopyrimidine inhibitors with broad enzymatic spectrum and dual targeting activity.  相似文献   
990.
The compound 1-(1-(2-(2-(2-fluoroethoxy)-4-(piperidin-4-yloxy)phenyl)acetyl)piperidin-4-yl)-3,4-dihydroquinolin-2(1H)-one (1) was synthesized and positively evaluated in vitro for high potency and selectivity with human oxytocin receptors. The positron emitting analogue, [F-18]1, was synthesized and investigated in vivo via PET imaging using rat and cynomolgus monkey models. PET imaging studies in female Sprague–Dawley rats suggested [F-18]1 reached the brain and accumulated in various regions of the brain, but washed out too rapidly for adequate quantification and localization. In vivo PET imaging studies in a male cynomolgus monkey suggested [F-18]1 had limited brain penetration while specific uptake of radioactivity significantly accumulated within the vasculature of the cerebral ventricles in areas representative of the choroid plexus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号