首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35960篇
  免费   3131篇
  国内免费   19篇
  2023年   100篇
  2022年   315篇
  2021年   601篇
  2020年   361篇
  2019年   477篇
  2018年   598篇
  2017年   526篇
  2016年   929篇
  2015年   1574篇
  2014年   1702篇
  2013年   2080篇
  2012年   2824篇
  2011年   2888篇
  2010年   1792篇
  2009年   1688篇
  2008年   2376篇
  2007年   2432篇
  2006年   2267篇
  2005年   2109篇
  2004年   2092篇
  2003年   1933篇
  2002年   1875篇
  2001年   418篇
  2000年   285篇
  1999年   415篇
  1998年   480篇
  1997年   349篇
  1996年   314篇
  1995年   276篇
  1994年   242篇
  1993年   259篇
  1992年   243篇
  1991年   190篇
  1990年   163篇
  1989年   184篇
  1988年   155篇
  1987年   140篇
  1986年   110篇
  1985年   148篇
  1984年   164篇
  1983年   115篇
  1982年   133篇
  1981年   122篇
  1980年   103篇
  1979年   61篇
  1978年   72篇
  1977年   69篇
  1976年   48篇
  1974年   35篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
TNFα (tumour necrosis factor α) is an early mediator in the systemic inflammatory response to infection and is therefore a therapeutic target in sepsis. AZD9773 is an ovine-derived, polyclonal anti-TNFα Fab fragment derived from a pool of serum and currently being developed as a treatment for severe sepsis and septic shock. In the present study, we show that although AZD9773 has a modest affinity for TNFα in a binding assay, the Ki in a cell-based assay is approximately four orders of magnitude lower. We show using SEC (size exclusion chromatography) that the maximum size of the complex between AZD9773 and TNFα is consistent with approximately 12 Fabs binding to one TNFα trimer. A number of approaches were taken to map the epitopes recognized by AZD9773. These revealed that a number of different regions on TNFα are involved in binding to the polyclonal Fab. The data suggest that there are probably three epitopes per monomer that are responsible for most of the inhibition by AZD9773 and that all three can be occupied at the same time in the complex. We conclude that AZD9773 is clearly demonstrated to bind to multiple epitopes on TNFα and suggest that the polyclonal nature may account, at least in part, for the very high potency observed in cell-based assays.  相似文献   
952.
In this study, we investigated the diversity and spatial distribution of anaerobic methanotrophic archaea (ANMEs) in sediments of a gas hydrate field off Joetsu in the Japan Sea. Distribution of ANMEs in sediments was identified by targeting the gene for methyl coenzyme M reductase alpha subunit (mcrA), a phylogenetically conserved gene that occurs uniquely in methanotrophic and methanogenic archaea, in addition to 16S rRNA genes. Quantitative PCR analyses of mcrA genes in 14 piston core samples suggested that members of ANME-1 group would dominate AOM communities in sulfate-depleted sediments, even below the sulfate-methane interface, while ANME-2 archaea would prefer to populate in shallower sediments containing comparatively higher sulfate concentrations. These results suggest that, although the potential electron acceptors in sulfate-depleted habitats remain elusive, the niche separation of ANME-1 and -2 may be controlled by in situ concentration of sulfate and the availability in sediments.  相似文献   
953.
954.
Vector field statistical analysis of kinematic and force trajectories   总被引:1,自引:0,他引:1  
When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of ‘non-directed’ hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called ‘statistical parametric mapping’ (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems.  相似文献   
955.
956.
Apoptosis and autophagy are two evolutionarily conserved processes that maintain homeostasis during stress. Although the two pathways utilize fundamentally distinct machinery, apoptosis and autophagy are highly interconnected and share many key regulators. The crosstalk between apoptosis and autophagy is complex, as autophagy can function to promote cell survival or cell death under various cellular conditions. The molecular mechanisms of crosstalk are beginning to be elucidated and have critical implications for the treatment of various diseases, such as cancer. Sphingolipids are a class of bioactive lipids that mediate many key cellular processes, including apoptosis and autophagy. By targeting several of the shared regulators, sphingolipid metabolites differentially regulate the induction of apoptosis and autophagy. Importantly, individual sphingolipid species appear to “switch” autophagy toward cell survival (e.g., sphingosine-1-phosphate) or cell death (e.g., ceramide, gangliosides). This review assesses the current understanding of sphingolipid-induced apoptosis and autophagy to address how sphingolipids mediate the “switch” between the cell survival and cell death. As sphingolipid metabolism is frequently dysregulated in cancer, sphingolipid-modulating agents, or sphingomimetics, have emerged as a novel chemotherapeutic strategy. Ultimately, a greater understanding of sphingolipid-mediated crosstalk between apoptosis and autophagy may be critical for enhancing the chemotherapeutic efficacy of these agents.  相似文献   
957.
ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease.  相似文献   
958.
Colipase is essential for efficient fat digestion. An arginine-to-cysteine polymorphism at position 92 of colipase (Arg92Cys) associates with an increased risk for developing type-2 diabetes through an undefined mechanism. To test our hypothesis that the extra cysteine increases colipase misfolding, thereby altering its intracellular trafficking and function, we expressed Cys92 colipase in HEK293T cells. Less Cys92 colipase is secreted and more is retained intracellularly in an insoluble form compared with Arg92 colipase. Nonreducing gel electrophoresis suggests the folding of secreted Cys92 colipase differs from Arg92 colipase. Cys92 colipase misfolding does not trigger the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress. The ability of secreted Cys92 colipase to stimulate pancreatic triglyceride lipase (PTL) is reduced with all substrates tested, particularly long-chain triglycerides. The reaction of Cys92 colipase with triolein and Intralipid has a much longer lag time, reflecting decreased ability to anchor PTL on those substrates. Our data predicts that humans with the Arg92Cys substitution will secrete less functional colipase into the duodenum and have less efficient fat digestion. Whether inefficient fat digestion or another property of colipase contributes to the risk for developing diabetes remains to be clarified.  相似文献   
959.
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.  相似文献   
960.
We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over‐expressing RCAN1 (RCAN1ox), but not in wild‐type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK‐506, replicates this effect in WT cells but has no additional effect in RCAN1ox cells. When we chronically expose WT cells to cyclosporine A and FK‐506 we find that catecholamine release per vesicle and pre‐spike foot (PSF) signal parameters are decreased, similar to that in RCAN1ox cells. Inhibiting calcineurin activity in RCAN1ox cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1ox cells, the smaller vesicle and dense core size we observe in RCAN1ox cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号