首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40152篇
  免费   3407篇
  国内免费   19篇
  43578篇
  2023年   148篇
  2022年   380篇
  2021年   706篇
  2020年   428篇
  2019年   555篇
  2018年   706篇
  2017年   604篇
  2016年   1067篇
  2015年   1800篇
  2014年   1925篇
  2013年   2388篇
  2012年   3154篇
  2011年   3189篇
  2010年   2013篇
  2009年   1883篇
  2008年   2640篇
  2007年   2725篇
  2006年   2500篇
  2005年   2318篇
  2004年   2299篇
  2003年   2128篇
  2002年   2022篇
  2001年   449篇
  2000年   321篇
  1999年   452篇
  1998年   530篇
  1997年   369篇
  1996年   334篇
  1995年   307篇
  1994年   262篇
  1993年   275篇
  1992年   254篇
  1991年   198篇
  1990年   178篇
  1989年   187篇
  1988年   149篇
  1987年   134篇
  1986年   110篇
  1985年   156篇
  1984年   184篇
  1983年   126篇
  1982年   145篇
  1981年   129篇
  1980年   101篇
  1979年   72篇
  1978年   79篇
  1977年   75篇
  1976年   45篇
  1974年   45篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
81.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   
82.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   
83.
Summary In order to deregulate arginine biosynthesis in Synechococcus sp. PCC7942, d-arginine-resistant cell lines were selected following ethyl methanesulfonate mutagenesis of wild-type (WT) cells. Three of these arginine-producing mutant (APM) cell lines, APM1, APM31 and APM40, were putative regulatory mutants based upon secretion of l-arginine into their growth medium. HPLC of lyophilized post-harvest supernatants of APM 31 and 40 resolved two predominant amino acids, arginine and citrulline. In-vitro activity of N-acetylglutamate kinase (NAGK), the proposed regulatory enzyme of the arginine pathway, was about 100-fold less sensitive to l-arginine inhibition in extracts from APM 31 and 40 than the enzyme in WT extracts. The enzyme from APM 1 was 20-fold less sensitive to l-arginine inhibition than WT. The most likely site of mutation in each of the APM cell lines is in the gene for NAGK, rendering the enzymes insensitive to l-arginine feedback control. These strains can be utilized for the phototrophic production of arginine. Offprint requests to: S. E. Bingham  相似文献   
84.
Seed size,pollination costs and angiosperm success   总被引:2,自引:0,他引:2  
Summary Seed plants capture pollen before seeds are dispersed and abort unpollinated ovules. As a result, each seed is associated with an accessory cost that represents the costs of pollen capture and the costs of aborted ovules. Accessory costs may explain the minimum seed size among species, because these costs are likely to comprise a greater proportion of total reproductive allocation in species with smaller seeds. For very small propagules, the costs of pollination may not be worth the benefits, perhaps explaining the persistence of pteridophytic reproduction at small propagule sizes. The smallest angiosperm seeds are much smaller than the smallest gymnosperm seeds, both in the fossil record and in the modern flora. This suggests that angiosperms can produce pollinated ovules more cheaply than gymnosperms. Pollination becomes less efficient as a species decreases in abundance, and this loss of efficiency is greater for species with a higher accessory cost per seed. We propose that the greater reproductive efficiency of angiosperms when rare can explain why angiosperm-dominated floras were more speciose than the gymnosperm-dominated floras they replaced.  相似文献   
85.
Summary Temporal patterns of variability in the longevity of the male and female phases of individual flowers and in the gender expression of plants of a dichogamous New Zealand tree,Pseudowintera colorata (Winteraceae), were documented in field studies. Two measures for the duration of phases in a dichogamous flower are distinguished; the nominal phases based on morphological features of the flower, and the effective phases reflecting the duration of their functions. Flower and phase longevity and phenotypic gender varied considerably throughout the season and among individuals. Temporal variability in phenotypic gender was loosely synchronized among the 12 plants sampled. Three effects of an environmental factor (temperature) were noted. First, increased temperatures shortened the duration of the female phase but had no effect on the duration of the male phase. Second, pollination frequency was positively correlated with temperature. These results indirectly suggest that increased pollination may shorten the duration of the female phase. Third, average population maleness, measured as the proportion of open flowers in the population on a given day which were in the male phase, was positively correlated with temperature. It is postulated that temperature indirectly influences temporal patterns of gender expression in the population through its differential effects on the longevity of the male and female phases in individual flowers. A theoretical model of bet-hedging shows that, if the direction of an environmental effect on the proportions of the sexual phases is irreversible, selection favours asynchronous dichogamy and reduces the temporal variability as much as possible. If the direction of the response is reversible, heterodichogamy is favoured.  相似文献   
86.
Summary Adult rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with capsaicin, substance P, serotonin, or a control of saline vehicle or bovine serum albumin (0.5 g/g body weight). Fish were sacrificed 30 min and 1,2 and 4 h post-injection, the gut was dissected out, and a small section of the upper intestine was processed for electron microscopy. A significant proportion of eosinophilic granule cells (EGCs) of the intestine were in close association with non-myelinated neuronal bundles in all fish (4 fish per treatment and time period), but there was no significant difference between treatment or time, suggesting that the association was unaffected by these factors. Close examination of EGC ultrastructure showed that fish treated with capsaicin and substance P exhibited limited degranulation of the EGCs in the stratum compactum and extensive crinophagic-like degranulation in the lamina propria. Cells of the lamina propria contained characteristic multivesicular-like bodies. The degranulation was reminiscent of both mast cell degranulation and endocrine cell crinophagy. EGCs of fish treated with serotonin or a control were unaffected, suggesting that the serotoninergic neurons, believed to be involved in gut motility, were not responsible for degranulation. It is apparent that EGCs of the trout intestine may be under nervous control, as has been demonstrated previously for mammalian mast cells.  相似文献   
87.
Summary The giant mucous cells in the skin of the terrestrial banana slug Ariolimax columbianus secret intact granules containing mucins. Electron microscopy, after ultrarapid freezing and freeze-substitution in osmium, shows that the secreted granules are bounded by two distinct membranes, presumably derived from the Golgi apparatus and the plasmalemma. Relatively stable, intact granules can be obtained in great quantity in our in vitro system. Rapid lysis of the granules was induced by adenosine triphosphate. At much higher concentrations, adenosine diphosphate and 5-adenylimido-diphosphate also caused lysis. Other nucleotides and related compounds, as well as 1,4,5-inositol triphosphate and molluscan neurotransmitters and neuropeptides, had no effect on the granules. The stability of secreted granules varied with the ionic composition of the isosmotic medium in which they were suspended. When the predominant cation in the medium was potassium, and calcium was also present, granules lysed if exposed to shear stress (stirring of the suspension). This did not occur if sodium was the major cation present. None of the other ions in the suspension media had detectable effects on the stability of the granules.  相似文献   
88.
The role played by cell addition, cell enlargement, and matrix deposition in the endochondral growth of the condyle was assessed in weanling rats by four approaches making use of the light microscope: morphometry, 3H-thymidine radioautography, 3H-proline radioautography, and immunostaining for the cartilage-specific type II collagen. From the articular surface down, the condyle may be divided into five layers made up of cells embedded in a matrix: 1) the articular layer composed of static cells in a matrix rich in fibers presumed to be of type I collagen, 2) the polymorphic cell layer including the progenitor cells from which arise the cells undergoing endochondral changes, 3) the flattened cell layer in which cells produce a precartilagenous matrix devoid of type II collagen while undergoing differentiation in two stages: a "chondroblast" stage and a short "flattened chondrocyte" stage when intracellular type II collagen elaboration begins, 4) the upper hypertrophic cell layer, in which cells are "typical chondrocytes" that enlarge at a rapid rate, actively produce type II collagen, and deposit it into a cartilagenous matrix, and 5) the lower hypertrophic cell layer, composed of chondrocytes at a stage of terminal enlargement while the cartilagenous matrix is adapting for mineralization. 3H-thymidine radioautographic results indicate that the turnover time of progenitor cells in the polymorphic cell layer is about 2.9 days. The time spent by cells at each stage of development is estimated to be 1.4 days as chondroblasts, 0.5 days as flattened chondrocytes, 2.3 days as the chondrocytes of the upper hypertrophic cell layer, and 1.1 days as those of the lower hypertrophic cell layer. Calculations referring to a 1 x 1-mm square-sided column extending from the articular surface to the zone of vascular invasion provide the daily rate of cell addition (0.0077 mm3), extracellular matrix deposition (0.0127 mm3), and cell enlargement (0.0302 mm3). Hence the respective contribution of the three factors to condyle growth is in a ratio of about 1:1.6:4. This result emphasizes the role played by cell enlargement in the overall growth of the condyle.  相似文献   
89.
A comparative study of the accuracy of three different approaches to phylogenetic estimation was made on simulated data with differing rates of change in different lineages. The three approaches were maximum likelihood, maximum parsimony, and phenetic clustering. The data were generated by simulating genetic drift with different population sizes over a simple four-species tree topology. Although the accuracy of all three approaches was found to be dependent on the number of loci (characters), maximum likelihood was found to perform considerably and consistently better than maximum parsimony or phenetic clustering.  相似文献   
90.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号