全文获取类型
收费全文 | 459篇 |
免费 | 45篇 |
专业分类
504篇 |
出版年
2023年 | 3篇 |
2022年 | 9篇 |
2021年 | 7篇 |
2020年 | 18篇 |
2019年 | 15篇 |
2018年 | 13篇 |
2017年 | 5篇 |
2016年 | 15篇 |
2015年 | 30篇 |
2014年 | 28篇 |
2013年 | 51篇 |
2012年 | 42篇 |
2011年 | 41篇 |
2010年 | 24篇 |
2009年 | 19篇 |
2008年 | 30篇 |
2007年 | 27篇 |
2006年 | 19篇 |
2005年 | 13篇 |
2004年 | 18篇 |
2003年 | 20篇 |
2002年 | 17篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1971年 | 1篇 |
1963年 | 2篇 |
1926年 | 1篇 |
排序方式: 共有504条查询结果,搜索用时 15 毫秒
101.
Marjan Huizing Vito DePinto Wim Ruitenbeek Frans J. M. Trijbels Lambert P. van den Heuvel Udo Wendel 《Journal of bioenergetics and biomembranes》1996,28(2):109-114
In a substantial group of subjects suspected to have a mitochondriopathy no defect in the mitochondrial energy metabolism (pyruvate dehydrogenase complex or respiratory chain complexes) can be demonstrated. At least in some of these subjects it seems justified to consider a defect in one of the proteins which mediate the transport of several ions and substrates across the mitochondrial membranes. Of particular interest are proteins which are directly involved in the process of oxidative phosphorylation, such as the adenine nucleotide translocator (ANT) and the phosphate carrier (PiC). However, defects in transmembrane ion transporters also may induce impaired energy metabolism probably as a result of osmotic disturbances within the mitochondrial matrix. In this respect, the voltage-dependent anion channel (VDAC) and other ion channels have to be taken into consideration. Here we review the still incomplete knowledge of the occurrence of ANT, PiC, VDAC, cation channels, and a few substrate carriers in human tissues, as well as their possible role in pathology. 相似文献
102.
Marjan Ghasemkhani Anna Holefors Salla Marttila Kerstin Dalman Anna Zborowska Mira Rur Jonathan Rees-George Hilde Nybom Kerry R. Everett Reiny W. A. Scheper Larisa Garkava-Gustavsson 《Trees - Structure and Function》2016,30(4):1111-1125
Key message
We designed a pair of primers from a region of the β-tubulin gene to detect and quantify Neonectria ditissima in wood of some infected apple cultivars, and optimized light microscopy to study fungal-plant interactions.Abstract
Neone ctria ditissima, the causal pathogen of fruit tree canker, is a sordariomycete fungus that affects apple orchards, especially in north-western Europe. To prevent serious disease epidemics, an accurate, rapid, and sensitive method for detection of N. ditissima is needed for pathogen identification. A quantitative real-time PCR (qPCR) assay was developed for both detection and quantification of this pathogen in infected apple cultivars. Several primer sets were designed from regions of the β-tubulin gene. One primer set passed several validation tests, and the melting curve confirmed species-specific amplification of the correct product. In addition, the N. ditissima biomass could be detected at variable amounts in samples from the infection sites of six different cultivars, with ‘Aroma’ having the lowest amount of N. ditissima biomass and ‘Elise’ the highest. To complement the qPCR results, tissue from detached shoots and 1-year-old trees of ‘Cox’s Orange Pippin’ (susceptible) and ‘Santana’ (partially resistant) was used in a histopathology study. In both detached shoots and trees, fungal hyphae were found in cells of all tissues. No qualitative differences in the anatomy of the infected samples were observed between the cultivars. In the detached shoot experiment, both cultivars were affected but differences in the rate of disease progression suggest that the partially resistant cultivar could resist the fungus longer. The qPCR assay developed in our study produced reproducible results and can be used for detection of N. ditissima in infected trees.103.
1.?To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2.?We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3.?The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4.?The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. 相似文献
104.
Cammarato A Ahrens CH Alayari NN Qeli E Rucker J Reedy MC Zmasek CM Gucek M Cole RN Van Eyk JE Bodmer R O'Rourke B Bernstein SI Foster DB 《PloS one》2011,6(4):e18497
Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease. 相似文献
105.
Guo Y Singleton PA Rowshan A Gucek M Cole RN Graham DR Van Eyk JE Garcia JG 《Molecular & cellular proteomics : MCP》2007,6(4):689-696
Endothelial cell barrier dysfunction results in the increased vascular permeability observed in inflammation, tumor metastasis, angiogenesis, and atherosclerosis. Sphingosine 1-phosphate (S1P), a biologically active phosphorylated lipid growth factor released from activated platelets, enhances the endothelial cell barrier integrity in vitro and in vivo. To begin to identify the molecular mechanisms mediating S1P induced endothelial barrier enhancement, quantitative proteomics analysis (iTRAQ) was performed on membrane rafts isolated from human pulmonary artery endothelial cells in the absence or presence of S1P stimulation. Our results demonstrated that S1P mediates rapid and specific recruitment (1 microM, 5 min) of myristoylated alanine-rich protein kinase C substrate (MARCKS) and MARCKS-related protein (MRP) to membrane rafts. Western blot experiments confirmed these findings with both MARCKS and MRP. Finally, small interfering RNA-mediated silencing of MARCKS or MRP or both attenuates S1P-mediated endothelial cell barrier enhancement. These data suggest the regulation of S1P-mediated endothelial cell barrier enhancement via the cell specific localization of MARCKS and MRP and validate the utility of proteomics approaches in the identification of novel molecular targets. 相似文献
106.
107.
Sergej Tomi? Jelena ?oki? Sa?a Vasiliji? Nina Ogrinc Rebeka Rudolf Primo? Pelicon Dragana Vu?evi? Petar Milosavljevi? Sr?a Jankovi? Ivan An?el Jelena Rajkovi? Marjan Slak Rupnik Bernd Friedrich Miodrag ?oli? 《PloS one》2014,9(5)
Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs'' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50. 相似文献
108.
Marjan Khalili Mahani Nobuyuki Inomata Alireza Saboori Baraldin Ebrahim Sayed Tabatabaei Hiroko Ishiyama Ardeshir Ariana Alfred E. Szmidt 《Experimental & applied acarology》2009,48(4):273-289
Allothrombium
pulvinum Ewing is a common natural enemy of aphids and some other arthropods. So far, there are no studies that have addressed genetic
variation of this predatory mite. We investigated genetic variation of A. pulvinum across its whole known range in Iran. A 410 bp portion of the mitochondrial cytochrome c oxidase subunit I gene (coxI) and 797–802 bp portion of the internal transcribed spacer 2 of rDNA (ITS2) were sequenced for 55 individuals from 11 populations, resulting in 12 and 26 haplotypes, respectively. In the coxI region, haplotype and nucleotide diversities varied among populations from 0.00 to 0.90 and from 0.0000 to 0.0110, respectively.
In the ITS2 region they varied from 0.20 to 0.91 and from 0.0006 to 0.0023, respectively. For both gene regions the highest haplotype
and nucleotide diversities were detected in population Mahmoud Abad from northern Iran. Statistically significant population
differentiation (F
ST) was detected in most pair-wise population comparisons. The results of population differentiation for both gene regions were
generally congruent indicating that A. pulvinum from Iran consists of genetically different populations. This suggests that A. pulvinum comprises at least two geographically distinct populations or even more than one species. This study is an initial step towards
understanding genetic variation of A. pulvinum, a taxon for which little molecular information is available. More intensive sampling and analysis of additional DNA regions
are necessary for more detailed classification of this taxon. 相似文献
109.
110.
Jurij Dolen?ek Andra? Sto?er Ma?a Skelin Klemen Evan W. Miller Marjan Slak Rupnik 《PloS one》2013,8(12)
Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. 相似文献