首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   14篇
  223篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   11篇
  2015年   18篇
  2014年   9篇
  2013年   13篇
  2012年   29篇
  2011年   14篇
  2010年   11篇
  2009年   11篇
  2008年   9篇
  2007年   15篇
  2006年   11篇
  2005年   9篇
  2004年   10篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1974年   1篇
排序方式: 共有223条查询结果,搜索用时 0 毫秒
41.
The thermodynamic asymmetry of siRNA duplexes determines their silencing activity. Favorable asymmetry can be achieved by incorporation of mismatches into the 3' part of the sense strand, providing fork-siRNAs, which exhibit higher silencing activity and higher sensitivity to nucleases. Recently, we found that selective 2'-O-methyl modifications of the nuclease-sensitive sites of siRNA significantly improve its nuclease resistance without substantial loss of silencing activity. Here, we examined the impact of nucleotide mismatches and the number and location of 2'-O-methyl modifications on the silencing activity and nuclease resistance of anti-MDR1 siRNAs. We found that both nonmodified and selectively modified fork-siRNAs with 4 mismatches at the 3' end of the sense strand suppress the expression of target gene at lower effective concentrations than the parent siRNAs with classical duplex design. The selective modification of nuclease-sensitive sites significantly improved the stability of fork-siRNAs in the presence of serum. The selectively modified fork-siRNA duplexes provided inhibitory effect over a period of 12 days posttransfection, whereas the gene silencing activity of the nonmodified analogs expired within 6 days. Thus, selective chemical modifications and structural alteration of siRNA duplexes improve their silencing properties and significantly prolong the duration of their silencing effect.  相似文献   
42.
This study investigates how the microstructural properties of trabecular bone affect suture anchor performance. Seven fresh-frozen humeri were tested for pullout strength with a 5 mm Arthrex Corkscrew in the greater tuberosity, lesser tuberosity, and humeral head. Micro-computed tomography analysis was performed in the three regions of interest directly adjacent to individual pullout experiments. The morphometric properties of bone mineral density (BMD), structural model index (SMI), trabecular thickness (TbTh), trabecular spacing (TbS), trabecular number (TbN), and connectivity density were compared against suture anchor pullout strength. BMD (r=0.64), SMI (r=?0.81), and TbTh (r=0.71) showed linear correlations to the pullout strength of the suture anchor with p-values<0.0001. A predictive model was developed to explain the variances in the individual BMD, SMI, and TbTh correlations. The multi-variant model of pullout strength showed a stronger relationship (r=0.86) compared to the individual experimental results. This study helps confirm BMD is a major influence on the pullout strength of suture anchors, but also illustrates the importance of local microstructure in pullout resistance of suture anchors.  相似文献   
43.
44.
In medical and pharmaceutical applications, chitosan is used as a component of hydrogels–macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups–dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)–leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.  相似文献   
45.
46.
47.

Iodine (I) is classified as a beneficial element for plants. Until now, there have been only hypotheses regarding the uptakes of organic iodine compounds by plant roots. The purpose of our research was to compare the uptakes and effects of the application of the following mineral and organic iodine compounds on young tomato plants: KI, 5-iodosalicylic (5-ISA), and 3,5-diiodosalicylic (3,5-diISA) acids. An additional control combination included the treatment with salicylic acid (SA) alone. All compounds were introduced into the nutrient solution in 5, 10, 25, and 50 μM I concentrations. It was established that after the application of 5-ISA and 3,5-diISA, iodine is taken up to a smaller extent than from KI. The tested KI, 3,5-diISA, and 5-ISA doses had no negative impact on the growth and development of plants, apart from the reduction of shoot biomass after the application of 3,5-diISA in 10 and 25 µM I doses. All applied compounds, except for SA, caused a reduction of ascorbic acid (AA) content and increase of dehydroascorbic acid (DHA) content in leaves. A significant increase of APX activity was noted only for the highest doses of KI and 5-ISA. None of the iodine compounds, in most tested doses, have substantially increased the CAT and POX activities in tomato leaves. Application of KI decreased the levels of all analyzed sugars in tomato leaves. The effect of iodosalicylates on sugar content varied depending on the compound: when applied in the highest dose 5-ISA increased, while 3,5-diISA decreased the sugar accumulation in tomato plants. In all tested treatments, a reduction of SA content in leaves was noted. We conclude that organic iodine compounds, i.e., 3,5-diISA and 5-ISA, can be taken up by the roots of tomato plants at an early stage of development.

  相似文献   
48.
The Drosophila lethal(2)denticleless (l(2)dtl) gene was originally reported as essential for embryogenesis and formation of the rows of tiny hairs on the larval ventral cuticle known as denticle belts. It is now well-established that l(2)dtl (also called cdt2) encodes a subunit of a Cullin 4-based E3 ubiquitin ligase complex that targets a number of key cell cycle regulatory proteins, including p21, Cdt1, E2F1 and Set8, to prevent replication defects and maintain cell cycle control. To investigate the role of l(2)dtl/cdt2 during development, we characterized existing l(2)dtl/cdt2 mutants and generated new deletion alleles, using P-element excision mutagenesis. Surprisingly, homozygous l(2)dtl/cdt2 mutant embryos developed beyond embryogenesis, had intact denticle belts, and lacked an observable embryonic replication defect. These mutants died during larval stages, affirming that loss of l(2)dtl/cdt2 function is lethal. Our data show that L(2)dtl/Cdt2 is maternally deposited, remains nuclear throughout the cell cycle, and has a previously unreported, elevated expression in the developing gonads. We also find that E2f1 regulates l(2)dtl/cdt2 expression during embryogenesis, possibly via several highly conserved putative E2f1 binding sites near the l(2)dtl/cdt2 promoter. Finally, hypomorphic allele combinations of the l(2)dtl/cdt2 gene result in a novel phenotype: viable, low-fertility males. We conclude that “denticleless” is a misnomer, but that l(2)dtl/cdt2 is an essential gene for Drosophila development.  相似文献   
49.
Transmembrane receptors with intrinsic serine/threonine or tyrosine kinase domains regulate vital functions of cells in multicellular eukaryotes, e.g., differentiation, apoptosis, and proliferation. Here, we show that bone morphogenetic protein type II receptor (BMPR-II) which has a serine/threonine kinase domain, and stem cell factor receptor (c-kit) which contains a tyrosine kinase domain form a complex in vitro and in vivo; the interaction is induced upon treatment of cells with BMP2 and SCF. Stem cell factor (SCF) modulated BMP2-dependent activation of Smad1/5/8 and phosphorylation of Erk kinase. SCF also enhanced BMP2-dependent differentiation of C2C12 cells. We found that BMPR-II was phosphorylated at Ser757 upon co-expression with and activation of c-kit. BMPR-II phosphorylation required intact kinase activity of BMPR-II. Abrogation of the c-kit/SCF-dependent phosphorylation of BMPR-II at the Ser757 interfered with the cooperative effect of BMP2 and SCF. Our data suggest that the complex formation between c-kit and BMPR-II leads to phosphorylation of BMPR-II at Ser757, which modulates BMPR-II-dependent signaling.  相似文献   
50.

Background

The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLECS), it acts not as a proteinase, but as a receptor for α1proteinase inhibitor (α1PI, α1antitrypsin, SerpinA1). Binding of α1PI to HLECS forms a motogenic complex. We previously demonstrated that α1PI deficiency attends HIV-1 disease and that α1PI augmentation produces increased numbers of immunocompetent circulating CD4+ lymphocytes. Herein we investigated the mechanism underlying the α1PI deficiency that attends HIV-1 infection.

Methods and Findings

Active α1PI in HIV-1 subjects (median 17 µM, n = 35) was significantly below normal (median 36 µM, p<0.001, n = 30). In HIV-1 uninfected subjects, CD4+ lymphocytes were correlated with the combined factors α1PI, HLECS + lymphocytes, and CXCR4+ lymphocytes (r2 = 0.91, p<0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with >220 CD4 cells/µl, CD4+ lymphocytes were correlated solely with active α1PI (r2 = 0.93, p<0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α1PI. Chimpanzee α1PI differs from human α1PI by a single amino acid within the 3F5-binding epitope. Unlike human α1PI, chimpanzee α1PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4+ lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α1PI immune complexes correlated with decreased CD4+ lymphocytes in HIV-1 subjects.

Conclusions

This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to protect against HIV-1 infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号