首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   38篇
  2023年   4篇
  2022年   8篇
  2021年   17篇
  2020年   7篇
  2019年   15篇
  2018年   23篇
  2017年   16篇
  2016年   37篇
  2015年   39篇
  2014年   45篇
  2013年   45篇
  2012年   49篇
  2011年   59篇
  2010年   39篇
  2009年   32篇
  2008年   65篇
  2007年   49篇
  2006年   45篇
  2005年   36篇
  2004年   39篇
  2003年   25篇
  2002年   34篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
排序方式: 共有769条查询结果,搜索用时 437 毫秒
31.
Fis1 in yeast localizes to the outer mitochondrial membrane and facilitates mitochondrial fission by forming protein complexes with Dnm1 and Mdv1. Fis1 orthologs exist in higher eukaryotes, suggesting that they are functionally conserved. In the present study, we cloned the human Fis1 ortholog that was predicted in a database, and determined the protein structure using NMR spectroscopy. Following a flexible N-terminal tail, six alpha-helices connected with short loops construct a single core domain. The C-terminal tail containing a transmembrane segment appears to be disordered. In the core domain, each of two sequentially adjacent helices forms a hairpin-like conformation, resulting in a six helix assembly forming a slightly twisted slab similar to that of a tandem array of tetratrico-peptide repeat (TPR) motif folds. Within this TPR-like core domain, no significant sequence similarity to the typical TPR motif is found. The structural analogy to the TPR-containing proteins suggests that Fis1 binds to other proteins at its concave hydrophobic surface. A simple composition of Fis1 comprised of a binding domain and a transmembrane segment indicates that the protein may function as a molecular adaptor on the mitochondrial outer membrane. In HeLa cells, however, increased levels in mitochondria-associated Fis1 did not result in mitochondrial translocation of Drp1, a potential binding partner of Fis1 implicated in the regulation of mitochondrial fission, suggesting that the interaction between Drp1 and Fis1 is regulated.  相似文献   
32.
Sensitivity to mutagens was studied in mouse lines selectively bred for high analgesia (HA) and for low analgesia (LA) induced by 3-min swimming in 20 degrees C water. Apart from pain-related traits HA mice also manifest, as compared to the LA line, higher emotionality in various behavioural tests, and cope worse with the hypothermic challenge of swimming in cold water. In the present study HA mice appeared more susceptible to the mutagenic effect of whole-body gamma-radiation and mitomycin-C injection. Both treatments caused higher frequencies of chromosomal aberrations and micronucleus in bone marrow cells in the HA than in the LA line. The results are discussed in terms of a genetic correlation between animals' susceptibility to environmental stressors and the mechanism of mutagenesis. As shown by our recent molecular study, the selection for magnitude of swim analgesia has differentiated the parental outbred population into two distinct genotypes characterised by specific minisatellite and microsatellite sequences for each line, which may be genetic markers of particular traits. We conceive that the breeding strategy, along with the differentiation of stress-related phenomena, has altered the frequencies of genes controlling DNA repair in each line.  相似文献   
33.
Filipski J  Mucha M 《Gene》2002,300(1-2):63-68
Recent localization of cohesin association regions along the yeast chromatin fibre suggests that compositional variability of DNA in yeast is related to the function and organization of the chromosomal loops. The bases of the loops, where the chromatin fibre is attached to the chromosomal axis, are AT-rich, bind cohesin, and are flanked by genes transcribed convergently. The hotspots of meiotic recombination are mainly found in the GC-rich parts of the loops, ‘external’ with respect to the chromosomal axis, frequently in the vicinity of the promoters of divergently transcribed genes. There are two possible reasons why the regions of the hotspots of recombination were enriched in GC content during evolution. One is a biased repair of recombination intermediates, and the second is a selective advantage due to an increased chromatin accessibility, which may have the carriers of GC-enriched alleles over the carriers of AT-rich alleles.  相似文献   
34.
Uptake and efflux of two anthracyclines, idarubicin (IDA) and daunorubicin (DNR), was studied in childhood acute leukemia samples. A comparison of IDA and DNR transport phenomena in relation to drug cytotoxicity and expression of P-glycoprotein (PGP) was made. Intracellular content of IDA/DNR was determined by flow cytometry using the fluorescent properties of the drugs. In vitro drug cytotoxicity was measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. PGP expression was analysed by flow cytometry. The uptake and efflux rates were non-significantly higher for IDA than DNR. There were no differences between three types of leukemia with respect to drug content during accumulation and retention. After correction for the cell volume, intracellular concentration of both drugs in each moment of uptake and efflux was significantly lower in relapsed ALL and AML samples in comparison with initial ALL cells. Efflux, but not uptake, of both drugs was inversely correlated with PGP expression and IDA, but not DNR, cytotoxicity. The cytotoxicity was correlated with drug accumulation for both drugs and with drug retention for IDA. In conclusion, it seems that (1) intracellular content was related to the lipophilic properties of the drugs rather than to the type of leukemia, (2) decreased intracellular concentration of both drugs might have an impact on compromised therapy results in AML and relapsed ALL children, (3) IDA presents higher cytotoxicity, which possibly might be decreased by the presence of PGP. These results might have a practical impact on the rational design of new chemotherapy protocols.  相似文献   
35.
Olczak M  Olczak T 《FEBS letters》2002,518(1-3):159-163
Butyric acid (BA) induces differentiation of human leukemia, including HL-60 cells. By using a fluorescent probe, we showed that reactive oxygen species (ROS) were generated in BA-treated cells. BA-induced differentiation was accompanied with an increased secretion of pro-matrix metalloproteinase (MMP)-9. Both phenomena were inhibited by antioxidants. Tissue inhibitors of MMP (TIMP)-1 and -2 secretion were increased by BA, but differently affected by antioxidants. By contrast, BA did not affect MMP-9 mRNA, and decreased TIMP-1 and TIMP-2 mRNA levels. In addition, migratory and invasive properties of HL-60 cells were enhanced by BA, but differently affected by antioxidants. Altogether, these results indicate that ROS are messengers of BA-induced differentiation and increased invasiveness.  相似文献   
36.
Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.  相似文献   
37.
Glufosfamide (beta-D-glucosyl-ifosfamide mustard) is a new agent for cancer chemotherapy. Its pharmacology is similar to commonly used oxazaphosphorines, but it does not require activation by hepatic cytochrome P-450 and preclinically demonstrates lower nephrotoxicity and myelosuppression than ifosfamide. The aim of the study was a comparison of the drug resistance profiles of glufosfamide and other oxazaphosphorines in childhood acute leukemias. Leukemic cells, taken from children with ALL on diagnosis (n = 41), ALL on relapse (n = 12) and AML on diagnosis (n = 13) were analyzed by means of the MTT assay. The following drugs were tested: glufosfamide (GLU), 4-HOO-ifosfamide (IFO), 4-HOO-cyclophosphamide (CYC) and mafosfamide cyclohexylamine salt (MAF). In the group of initial ALL samples median cytotoxicity values for GLU, IFO, CYC and MAF were 15.5, 33.8, 15.7 and 7.8 microM, respectively. In comparison with initial ALL samples, the relative resistance for GLU and IFO in relapsed ALL samples was 1.9 (p = 0.049) and 1.3 (ns), and in initial AML samples 31 (p < 0.001) and 5 (p = 0.001), respectively. All oxazaphosphorines presented highly significant cross-resistance. Glufosfamide presented high activity against lymphoblasts both on diagnosis and on relapse.  相似文献   
38.
Pathogenesis-related class 10 (PR10) proteins are restricted to the plant kingdom where they are coded by multigene families and occur at high levels. In spite of their abundance, their physiological role is obscure although members of a distantly related subclass (cytokinin-specific binding proteins) are known to bind plant hormones. PR10 proteins are of special significance in legume plants where their expression patterns are related to infection by the symbiotic, nitrogen-fixing bacteria. Here we present the first crystal structures of classic PR10 proteins representing two homologues from one subclass in yellow lupine. The general fold is similar and, as in a birch pollen allergen, consists of a seven-stranded beta-sheet wrapped around a long C-terminal helix. The mouth of a large pocket formed between the beta-sheet and the helix seems a likely site for ligand binding. The shape of the pocket varies because, in variance with the rigid beta-sheet, the helix shows unusual conformational variability consisting in bending, disorder, and axial shifting. A surface loop, proximal to the entrance to the internal cavity, shows an unusual structural conservation and rigidity in contrast to the high glycine content in its sequence. The loop is different from the so-called glycine-rich P-loops that bind phosphate groups of nucleotides, but it is very likely that it does play a role in ligand binding in PR10 proteins.  相似文献   
39.
Olczak M  Watorek W 《Phytochemistry》2002,61(6):645-655
Acid phosphatase (AP) and diphosphonucleoside phosphatase/phosphodiesterase (PPD1) were purified from yellow lupin (Lupinus luteus L.) immature green seeds (40 days after blooming), dry seeds (40 days later) and dry seeds stored for 160 days. Both enzymes are known to differ in the type of N-glycosylation: the first has an N-glycosylation pattern typical for a vacuolar protein, while the second enzyme has a pattern typical for an extracellular or membrane-bound protein. N-Glycans were released from each of the enzyme preparations, fluorescence labeled, separated and identified by HPLC (GlycoSep N and GlycoSep H columns). Changes in the level of each N-glycan during seed maturation and dormancy were compared. The results show that N-glycan processing in the case of AP and PPD1-two proteins residing in the same plant organ, but possibly in different compartments-is not synchronized and performed not only in metabolically active maturing seeds, but also in metabolically inactive dormant seeds.  相似文献   
40.
Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of fungal infections. According to the general understanding, the mode of action of AmB is directly related to the molecular organization of the drug in the lipid environment, in particular to the formation of pore-like molecular aggregates. Electronic absorption and fluorescence techniques were applied to investigate formation of molecular aggregates of AmB in the lipid environment of liposomes and monomolecular layers formed at the argon-water interface. It appears that AmB dimers, stabilized by van der Waals interactions, are present in the membrane environment along with the aggregates formed by a greater number of molecules. Linear dichroism measurements reveal that AmB is distributed between two fractions of molecules, differently oriented with respect to the bilayer. Molecules in one fraction remain parallel to the plane of the membrane and molecules in the other one are perpendicular. Scanning Force Microscopy imaging of the surface topography of the monolayers formed with AmB in the presence of lipids reveals formation of pore-like structures characterized by the external diameter close to 17 A and the internal diameter close to 6 A. All the findings are discussed in terms of importance of the molecular organization of AmB in the pharmacological action, as well as of the toxic side effects of the drug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号