首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   39篇
  2023年   4篇
  2022年   8篇
  2021年   17篇
  2020年   7篇
  2019年   15篇
  2018年   23篇
  2017年   16篇
  2016年   38篇
  2015年   39篇
  2014年   45篇
  2013年   45篇
  2012年   49篇
  2011年   59篇
  2010年   39篇
  2009年   32篇
  2008年   65篇
  2007年   49篇
  2006年   45篇
  2005年   36篇
  2004年   39篇
  2003年   25篇
  2002年   34篇
  2001年   2篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1967年   1篇
排序方式: 共有771条查询结果,搜索用时 46 毫秒
41.
The oxidative susceptibility of plasma obtained from rats after intragastric administration of quercetin was studied to know whether or not quercetin acts as an in vivo antioxidant after metabolic conversion. Quercetin was raised in the rat blood plasma essentially as glucuronide and/or sulfate conjugates. The plasma obtained from rats after quercetin administration was more resistant against copper sulfate-induced lipid peroxidation than the control plasma on the basis of the accumulation of cholesteryl ester hydroperoxides and the consumption of α-tocopherol. The results strongly suggest that some conjugated metabolites of quercetin act as effective antioxidants when plasma is subject to metal ion-induced lipid peroxidation.  相似文献   
42.
The metabolism of indole-3-acetic acid (IAA) was investigated in 14-d-old Arabidopsis plants grown in liquid culture. After ruling out metabolites formed as an effect of nonsterile conditions, high-level feeding, and spontaneous interconversions, a simple metabolic pattern emerged. Oxindole-3-acetic acid (OxIAA), OxIAA conjugated to a hexose moiety via the carboxyl group, and the conjugates indole-3-acetyl aspartic acid (IAAsp) and indole-3-acetyl glutamate (IAGlu) were identified by mass spectrometry as primary products of IAA fed to the plants. Refeeding experiments demonstrated that none of these conjugates could be hydrolyzed back to IAA to any measurable extent at this developmental stage. IAAsp was further oxidized, especially when high levels of IAA were fed into the system, yielding OxIAAsp and OH-IAAsp. This contrasted with the metabolic fate of IAGlu, since that conjugate was not further metabolized. At IAA concentrations below 0.5 μm, most of the supplied IAA was metabolized via the OxIAA pathway, whereas only a minor portion was conjugated. However, increasing the IAA concentrations to 5 μm drastically altered the metabolic pattern, with marked induction of conjugation to IAAsp and IAGlu. This investigation used concentrations for feeding experiments that were near endogenous levels, showing that the metabolic pathways controlling the IAA pool size in Arabidopsis are limited and, therefore, make good targets for mutant screens provided that precautions are taken to avoid inducing artificial metabolism.The plant hormone IAA is an important signal molecule in the regulation of plant development. Its central role as a growth regulator makes it necessary for the plant to have mechanisms that strictly control its concentration. The hormone is believed to be active primarily as the free acid, and endogenous levels are controlled in vivo by processes such as synthesis, oxidation, and conjugation. IAA has been shown to form conjugates with sugars, amino acids, and small peptides. Conjugates are believed to be involved in IAA transport, in the storage of IAA for subsequent use, in the homeostatic control of the pool of the free hormone, and as a first step in the catabolic pathways (Cohen and Bandurski, 1978; Nowacki and Bandurski, 1980; Tuominen et al., 1994; Östin et al., 1995; Normanly, 1997). It is generally accepted that in some species conjugated IAA is the major source of free IAA during the initial stages of seed germination (Ueda and Bandurski, 1969; Sandberg et al., 1987; Bialek and Cohen, 1989), and there is also evidence that in some plants (but not all; see Bialek et al., 1992), the young seedling is entirely dependent on the release of free IAA from conjugated pools until the plant itself is capable of de novo synthesis (Epstein et al., 1980; Sandberg et al., 1987).The function of conjugated IAA during vegetative growth is somewhat less clear. It has been shown that conjugated IAA constitutes as much as 90% of the total IAA in the plant during vegetative growth (Normanly, 1997). However, the role of the IAA conjugates at this stage of the plant''s life cycle remains unknown. Analysis of endogenous IAA conjugates in vegetative tissues has revealed the presence of a variety of different compounds, including indole-3-acetyl-inositol, indole-3-acetyl-Ala, IAAsp, and IAGlu (Anderson and Sandberg, 1982; Cohen and Baldi, 1983; Chisnell, 1984; Cohen and Ernstsen, 1991; Östin et al., 1992). Studies of vegetative tissues have indicated that IAAsp, one of the major conjugates in many plants, is the first intermediate in an irreversible deactivation pathway (Tsurumi and Wada, 1986; Tuominen et al., 1994; Östin, 1995). Another mechanism that is believed to be involved in the homeostatic control of the IAA pool is catabolism by direct oxidation of IAA to OxIAA, which has been shown to occur in several plant species (Reinecke and Bandurski, 1983; Ernstsen et al., 1987).One area in the study of IAA metabolism in which our knowledge is increasing is the analysis of the homeostatic controls of IAA levels in plants. It has been possible, for instance, to increase the levels of IAA in transgenic plants expressing iaaM and iaaH genes from Agrobacterium tumefaciens. Analysis of these transgenic plants has indicated that plants have several pathways that can compensate for the increased production of IAA (Klee et al., 1987; Sitbon, 1992). It is expected that future studies using now-available genes will provide further insight into IAA metabolism. For example, a gene in maize encoding IAA-Glc synthetase has been identified, and several genes (including ILR1, which may be involved in hydrolysis of the indole-3-acetyl-Leu conjugate) have been cloned from Arabidopsis (Szerszen et al., 1994; Bartel and Fink, 1995). Furthermore, Chou et al. (1996) identified a gene that hydrolyzes the conjugate IAAsp to free IAA in the bacterium Enterobacter aggloremans.Because of its small genome size, rapid life cycle, and the ease of obtaining mutants, Arabidopsis is increasingly used as a genetic model system to investigate various aspects of plant growth and development. IAA signal transduction is also being investigated intensively in Arabidopsis in many laboratories (Leyser, 1997). Mutants with altered responses to externally added auxins or IAA conjugates have been identified in Arabidopsis. The identified mutants are either signal transduction mutants such as axr1-4 (Lincoln et al., 1990), or have mutations in genes involved in auxin uptake or transport, such as aux1 and pin1 (Okada et al., 1991; Bennett et al., 1996). A few mutants that are unable to regulate IAA levels or are unable to hydrolyze IAA conjugates, sur1-2 and ilr1, respectively, have also been identified (Bartel and Fink, 1995; Boerjan et al., 1995). To our knowledge, no mutant that is auxotrophic for IAA has been identified to date, which may reflect the redundancy in IAA biosynthetic pathways or the lethality of such mutants.In spite of the work reported thus far, many aspects of the metabolism of IAA in Arabidopsis require further investigation, because few details of the processes involved in IAA regulation are known. This lack of knowledge puts severe constraints on genetic analysis of IAA metabolism in Arabidopsis. For example, it is essential to have prior knowledge of IAA metabolism to devise novel and relevant screens with which to identify mutants of IAA metabolism. We have sought to address this issue by identifying the metabolic pathways involved in catabolism and conjugation under conditions that minimally perturb physiological processes. In this investigation we studied the conjugation and catabolic pattern of IAA by supplying relatively low levels of labeled IAA and identifying the catabolites and conjugates by MS. Different feeding systems were tested to optimize the application of IAA and to avoid irregularities in metabolism attributable to culturing, feeding conditions, or microbial activity. It is well documented that IAA metabolism is altered according to the amount of exogenous auxin applied; therefore, we placed special emphasis on distinguishing between catabolic routes that occur at near-physiological concentrations and those that occur at the high auxin concentrations commonly used in mutant screens.  相似文献   
43.
44.
BackgroundObesity is a worldwide epidemic with more than 600 million affected individuals. Human studies have demonstrated some alterations in brains of otherwise healthy obese individuals and elevated risk of neurodegenerative disease of old age; these studies have also pointed to slightly diminished memory and executive functions among healthy obese individuals. Similar findings were obtained in animal models of obesity induced by high fat diet. On the other hand, low carbohydrate high fat diets are currently promoted for losing weight (e.g., Atkin’s style diets). However, the long-term effects of such diets are not known. Additionally, high fat diets leading to (mild) ketonemia were shown to improve brain function in elderly humans and in some animal models.AimTo evaluate the hypothesis that long-term use of a high fat diet was associated with decreases in spatial memory, smaller hippocampi and hippocampi metabolite concentrations in Wistar rats.MethodsTwenty five male Wistar rats were put on high fat diet (HFD; 60% calories from fat, 30% from carbohydrates) on their 55th day of life, while 25 control male rats (CONs) remained on chow. Adequate levels of essential nutrients were provided. Both groups underwent memory tests in 8-arm radial maze at 3rd, 6th, 9th, and 12th month. 1H magnetic resonance spectroscopy was employed to measure concentrations of tNAA (marker of neuronal integrity) at one month and one year, whereas MRI was used to evaluate hippocampal volumes.ResultsObese rats (OBRs) consumed similar amount of calories as CONs, but less proteins. However, their protein intake was within recommended amounts. Throughout the experiment OBRs had statistically higher concentrations of blood ketone bodies than CONs, but still within normal values. At post-mortem assessment, OBRs had 38% larger fat deposits than CONs (p<0.05), as evaluated by volume of epididymis fat, an acknowledged marker of fat deposits in rats. Contrary to our expectations, OBRs had better scores of memory behavioral tasks than CONs throughout the experiment. At one year, their hippocampi were by 2.6% larger than in CONs (p = 0.05), whereas concentration of tNAA was 9.8% higher (p = 0.014).ConclusionLong-term HFD in our study resulted in better memory, larger hippocampal volumes, as well as higher hippocampal metabolite concentrations, possibly due to increased levels of blood ketone bodies. The results should be interpreted with caution, as results from animal models do not necessarily directly translate in human condition.  相似文献   
45.
It has been interesting that nearly all of the ion activities that have been analysed thus far have exhibited oscillations that are tightly coupled to growth. Here, we present discrete Fourier transform (DFT) spectra with a finite sampling of tip-growing cells and organs that were obtained from voltage measurements of the elongating coleoptiles of maize in situ. The electromotive force (EMF) oscillations (~ 0.1 μV) were measured in a simple but highly sensitive resistor–inductor circuit (RL circuit), in which the solenoid was initially placed at the tip of the specimen and then was moved thus changing its position in relation to growth (EMF can be measured first at the tip, then at the sub-apical part and finally at the shank). The influx- and efflux-induced oscillations of Ca2+, along with H+, K+ and Cl- were densely sampled (preserving the Nyquist theorem in order to ‘grasp the structure’ of the pulse), the logarithmic amplitude of pulse spectrum was calculated, and the detected frequencies, which displayed a periodic sequence of pulses, were compared with the literature data. A band of life vital individual pulses was obtained in a single run of the experiment, which not only allowed the fundamental frequencies (and intensities of the processes) to be determined but also permitted the phase relations of the various transport processes in the plasma membrane and tonoplast to be established. A discrete (quantised) frequency spectrum was achieved for a growing plant for the first time, while all of the metabolic and enzymatic functions of the life cell cycle were preserved using this totally non-invasive treatment.  相似文献   
46.
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.  相似文献   
47.
In fly ovaries, the follicular epithelium surrounding germline cells diversifies into several morphologically distinct cell subpopulations. This complex process is crucial for the formation of a regionally complex eggshell and establishment of polarity of the future embryo. Morphogenetic changes accompanying patterning of the follicular epithelium have been best characterized in the model fly, Drosophila melanogaster. Here, we analyze follicular epithelium diversification in the ovaries of Tachypeza nubila, a brachyceran fly closely related to the group Cyclorrhapha, which also includes Drosophila. We provide morphological evidence that in Tachypeza, the diversification process differs from that described in the Drosophila model system in several important respects: (i) follicle cells differentiate into five subpopulations (versus eight in Drosophila); (ii) only one of these subpopulations (i.e. border cells) is migratory (versus four in Drosophila); (iii) the main body follicle cells form a uniform epithelium with no distinct border between follicle cells covering the nurse cell compartment and the oocyte; (iv) chorionic material is deposited not only on the surface of the oocyte but also on the nurse cells; (v) there is no centripetal migration of the follicle cells; (vi) the resulting eggshell is morphologically simple with no regional specializations except for the micropylar apparatus at the anterior pole of the oocyte. Our findings provide novel insights into the evolution of the follicle cell patterning and functioning in dipterans. A critical analysis of these processes in different dipteran groups strongly indicates that in Tachypeza, follicular epithelium diversification follows a distinct pattern, novel for higher dipterans.  相似文献   
48.
We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.  相似文献   
49.
p66Shc, the growth factor adaptor protein, can have a substantial impact on mitochondrial metabolism through regulation of cellular response to oxidative stress. We investigated relationships between the extent of p66Shc phosphorylation at Ser36, mitochondrial dysfunctions and an antioxidant defense reactions in fibroblasts derived from five patients with various mitochondrial disorders (two with mitochondrial DNA mutations and three with methylglutaconic aciduria and genetic defects localized, most probably, in nuclear genes). We found that in all these fibroblasts, the extent of p66Shc phosphorylation at Ser36 was significantly increased. This correlated with a substantially decreased level of mitochondrial superoxide dismutase (SOD2) in these cells. This suggest that SOD2 is under control of the Ser36 phosphorylation status of p66Shc protein. As a consequence, an intracellular oxidative stress and accumulation of damages caused by oxygen free radicals are observed in the cells.  相似文献   
50.
The differential allocation theory predicts that females should invest more in offspring produced with attractive partners, and a number of studies support this prediction in birds. Females have been shown to increase reproductive investment when mated to males showing elaborated sexual traits. However, mate attractiveness might also depend on the interaction between male and female genotypes. Accordingly, females should invest more in offspring sired by individuals that are genetically dissimilar or carry superior alleles. Here, we show in zebra finches (Taeniopygia guttata) that pairs of unfamiliar genetic brothers and sisters are less likely to reproduce in comparison with randomly mated pairs. Among the brother–sister pairs, those that attempted to breed laid smaller clutches and of lower total clutch mass. Our results provide the first experimental evidence that females adjust their reproductive effort in response to the genetic similarity of their partners. Importantly, these results imply a female ability to assess relatedness of a social mate without prior association.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号