全文获取类型
收费全文 | 810篇 |
免费 | 57篇 |
专业分类
867篇 |
出版年
2023年 | 8篇 |
2022年 | 18篇 |
2021年 | 28篇 |
2020年 | 12篇 |
2019年 | 26篇 |
2018年 | 22篇 |
2017年 | 24篇 |
2016年 | 30篇 |
2015年 | 55篇 |
2014年 | 60篇 |
2013年 | 53篇 |
2012年 | 90篇 |
2011年 | 66篇 |
2010年 | 53篇 |
2009年 | 20篇 |
2008年 | 44篇 |
2007年 | 39篇 |
2006年 | 39篇 |
2005年 | 29篇 |
2004年 | 25篇 |
2003年 | 27篇 |
2002年 | 19篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 6篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1982年 | 2篇 |
1980年 | 3篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1964年 | 1篇 |
1963年 | 1篇 |
1953年 | 1篇 |
排序方式: 共有867条查询结果,搜索用时 15 毫秒
21.
Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths 总被引:4,自引:0,他引:4
Oxygen mass transfer represents the most important parameter involved in the design and operation of mixing-sparging equipment for bioreactors. It can be described and analyzed by means of the mass transfer coefficient, kLa. The kLa values are affected by many factors such as geometrical and operational characteristics of the vessels, media composition, type, concentration and microorganism morphology, and biocatalysts properties. The efficiency of oxygen transfer could be enhanced by adding oxygen-vectors in broths, such as hydrocarbons or fluorocarbons, without increasing the energy consumption for mixing or aeration. The experimental results obtained for simulated broths indicated a considerable increase of kLa in the presence of n-dodecane, and the existence of a certain value of n-dodecane concentration that corresponds to a maximum mass transfer rate of oxygen. The magnitude of the positive effect of n-dodecane depends both on the broths characteristics and operational conditions of the bioreactor.Notation d stirrer diameter, mm - d oxygen electrode diameter, mm - D bioreactor diameter, mm - h distance from the inferior stirrer to the bioreactor bottom, mm - H bioreactor height, mm - kLa oxygen mass transfer coefficient, s-1 - l impeller blade length, mm - I oxygen electrode immersed length, mm - P power consumption for mixing of non-aerated broths, W - Pa power consumption for mixing of aerated broths, W - (Pa/V) specific power input, W/m3 - s baffle width, mm - vS superficial air velocity, m/s - V volume of medium, m3 - w impeller blade height, mm - volumetric fraction of oxygen-vector - a apparent viscosity, Pa*s - density, kg/m3 相似文献
22.
Friederike Cuello Manu Shankar-Hari Ursula Mayr Xiaoke Yin Melanie Marshall Gonca Suna Peter Willeit Sarah R. Langley Tamani Jayawardhana Tanja Zeller Marius Terblanche Ajay M. Shah Manuel Mayr 《Molecular & cellular proteomics : MCP》2014,13(10):2545-2557
In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung—common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.Severe sepsis is a common acute illness in intensive care units (ICUs)1 and is associated with high mortality rates and chronic morbidity. When it is associated with hypotension (termed septic shock), the mortality rate is very high (50% to 80%). Cardiovascular dysfunction during sepsis is multifactorial and often associated with minimal loss of myocardial tissue, but with the release of myocardial-specific markers such as troponins. A key unmet clinical need is the availability of a biomarker that predicts myocardial dysfunction early, monitors response to treatment, and thus identifies a cohort of patients at higher risk of septic shock to aid in targeted interventions and improve outcome (1).In the present study, we used proteomics for biomarker discovery. Over the past decade, the field of proteomics has made impressive progress. Plasma and serum, however, are the most complex proteomes of the human body (2), and less abundant proteins tend to be missed in untargeted proteomics analyses of body fluids (3). Thus, we pursued an alternative strategy: the application of proteomics to diseased tissue (4), in which the potential biomarkers are less dilute and have a less uncertain cellular origin (5–7). We employed a solubility-based protein-subfractionation methodology to analyze inflammatory proteins that are retained with sepsis tissue. This innovative proteomics approach shall reveal inflammatory molecules that reside and persist within inflamed tissue. We hypothesized that proteins that accumulate in the susceptible tissues are more likely to be biomarker candidates for organ dysfunction than proteins that just circulate in plasma or serum. We then validated our proteomics findings in the preclinical model using samples from sepsis patients admitted to ICUs. 相似文献
23.
Markus Oberpaul Stephan Brinkmann Michael Marner Sanja Mihajlovic Benedikt Leis Maria A. Patras Christoph Hartwig Andreas Vilcinskas Peter E. Hammann Till F. Schäberle Marius Spohn Jens Glaeser 《Microbial biotechnology》2022,15(2):415-430
High-throughput platforms facilitating screening campaigns of environmental samples are needed to discover new products of natural origin counteracting the spreading of antimicrobial resistances constantly threatening human and agricultural health. We applied a combination of droplet microfluidics and fluorescence-activated cell sorting (FACS)-based technologies to access and assess a microbial environmental sample. The cultivation performance of our microfluidics workflow was evaluated in respect to the utilized cultivation media by Illumina amplicon sequencing of a pool of millions of droplets, respectively. This enabled the rational selection of a growth medium supporting the isolation of microbial diversity from soil (five phyla affiliated to 57 genera) including a member of the acidobacterial subgroup 1 (genus Edaphobacter). In a second phase, the entire diversity covered by 1071 cultures was used for an arrayed bioprospecting campaign, resulting in > 6000 extracts tested against human pathogens and agricultural pests. After redundancy curation by using a combinatorial chemical and genomic fingerprinting approach, we assigned the causative agents present in the extracts. Utilizing UHPLC-QTOF-MS/MS-guided fractionation and microplate-based screening assays in combination with molecular networking the production of bioactive ionophorous macrotetrolides, phospholipids, the cyclic lipopetides massetolides E, F, H and serratamolide A and many derivatives thereof was shown. 相似文献
24.
25.
Jean Kaoru Millet Fran?ois Kien Chung-Yan Cheung Yu-Lam Siu Wing-Lim Chan Huiying Li Hiu-Lan Leung Martial Jaume Roberto Bruzzone Joseph S. Malik Peiris Ralf Marius Altmeyer Béatrice Nal 《PloS one》2012,7(11)
Background
Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process.Methodology/Principal Findings
We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion.Conclusions/Significance
Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection. 相似文献26.
27.
28.
Cyrklaff M Linaroudis A Boicu M Chlanda P Baumeister W Griffiths G Krijnse-Locker J 《PloS one》2007,2(5):e420
At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction. 相似文献
29.
30.
Yan Li Marie-Claire Héloir Xun Zhang Mareen Geissler Sophie Trouvelot Lucile Jacquens Marius Henkel Xin Su Xuewen Fang Qi Wang Marielle Adrian 《Molecular Plant Pathology》2019,20(8):1037-1050
Bacillus subtilis GLB191 (hereafter GLB191) is an efficient biological control agent against the biotrophic oomycete Plasmopara viticola, the causal agent of grapevine downy mildew. In this study, we show that GLB191 supernatant is also highly active against downy mildew and that the activity results from both direct effect against the pathogen and stimulation of the plant defences (induction of defence gene expression and callose production). High-performance thin-layer chromatography analysis revealed the presence of the cyclic lipopeptides fengycin and surfactin in the supernatant. Mutants affected in the production of fengycin and/or surfactin were thus obtained and allowed us to show that both surfactin and fengycin contribute to the double activity of GLB191 supernatant against downy mildew. Altogether, this study suggests that GLB191 supernatant could be used as a new biocontrol product against grapevine downy mildew. 相似文献