首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   103篇
  2022年   9篇
  2021年   29篇
  2020年   11篇
  2019年   15篇
  2018年   22篇
  2017年   13篇
  2016年   17篇
  2015年   36篇
  2014年   43篇
  2013年   64篇
  2012年   69篇
  2011年   55篇
  2010年   43篇
  2009年   30篇
  2008年   58篇
  2007年   56篇
  2006年   51篇
  2005年   53篇
  2004年   52篇
  2003年   49篇
  2002年   45篇
  2001年   40篇
  2000年   30篇
  1999年   22篇
  1998年   16篇
  1997年   20篇
  1996年   12篇
  1995年   17篇
  1994年   12篇
  1993年   16篇
  1992年   19篇
  1991年   19篇
  1990年   9篇
  1989年   16篇
  1988年   8篇
  1987年   14篇
  1986年   7篇
  1985年   17篇
  1983年   8篇
  1982年   6篇
  1981年   8篇
  1980年   8篇
  1979年   15篇
  1978年   8篇
  1975年   9篇
  1973年   7篇
  1972年   6篇
  1971年   8篇
  1970年   10篇
  1967年   6篇
排序方式: 共有1281条查询结果,搜索用时 15 毫秒
61.
High resolution NMR was applied to study biochemical changes of lipids in cod (Gadus morhua) gonads during 7 days storage at 4 degrees C. Changes were observed in the (13)C and (1)H resonances of cholesterol which were due to esterification of fatty acids at the hydroxyl position in roe and milt. Furthermore, the (13)C NMR spectra showed that the lipolytic changes in milt and roe where different. New resonances appeared during storage, due to formation of specific free fatty acids, with the corresponding changes in resonances of the esterified carbonyls and glycerols. The highly unsaturated n-3 fatty acids were hydrolysed from the sn-1 and sn-2 position of both phosphatidylcholine and phosphatidylethanolamine in milt. The lipolytical changes in roe were less prominent compared to the changes in milt, however significant levels of sn-1-lysophospholipids was detected both in roe and milt. The current data demonstrate that high resolution NMR may be a suitable method to non-destructively study hydrolysis and esterification reactions occurring in heterogeneous marine lipids in a one step procedure.  相似文献   
62.
63.
Capture-recapture, epidemiology, and list mismatches: several lists   总被引:1,自引:0,他引:1  
Lee AJ  Seber GA  Holden JK  Huakau JT 《Biometrics》2001,57(3):707-713
In applying capture-recapture methods for closed populations to epidemiology, e.g., in the estimation of the size of a diabetes population, one comes up against the problem of list errors due to mistyping or misinformation. This problem has been studied for just two lists by Seber, Huakau, and Simmons (2000, Biometrics 56, 1227 1232) using the concept of tag loss borrowed from animal population studies. In this article, we discuss a similar method that can be extended to an arbitrary number of lists. The methods are applied to an example.  相似文献   
64.
65.
A technique was developed for differentiating the activity of microbes solely within sol gels by using the contribution of biomass outgrowth. Streptomyces rimosus was immobilised in colloidal silica gels and biomass growth, oxytetracycline synthesis, pH and carbohydrate consumption were compared for UV surface-sterilised gels, untreated gels, and liquid cultures. Absolute and biomass specific oxytetracycline yields were higher for non-sterile gels than for liquid culture. Biomass solely within colloidal silica gels (1.7 mg ml–1), and gels obtained from colloidal silica modified by addition of larger silica particles (1.2 mg ml–1) yielded 27 and 21 g ml–1 oxytetracycline compared with 97 and 104 g ml–1 for unsterilised gels (3.6 and 5.2 mg ml–1 biomass) displaying outgrowth. It was therefore apparent that biomass and antibiotic production within the gels was limited and that optimisation requires gel modification.  相似文献   
66.
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.  相似文献   
67.
The prospect of using linkage disequilibrium (LD) for fine-scale mapping in humans has attracted considerable attention, and, during the validation of a set of single-nucleotide polymorphisms (SNPs) for linkage analysis, a set of data for 4,833 SNPs in 538 clusters was produced that provides a rich picture of local attributes of LD across the genome. LD estimates may be biased depending on the means by which SNPs are first identified, and a particular problem of ascertainment bias arises when SNPs identified in small heterogeneous panels are subsequently typed in larger population samples. Understanding and correcting ascertainment bias is essential for a useful quantitative assessment of the landscape of LD across the human genome. Heterogeneity in the population recombination rate, rho=4Nr, along the genome reflects how variable the density of markers will have to be for optimal coverage. We find that ascertainment-corrected rho varies along the genome by more than two orders of magnitude, implying great differences in the recombinational history of different portions of our genome. The distribution of rho is unimodal, and we show that this is compatible with a wide range of mixtures of hotspots in a background of variable recombination rate. Although rho is significantly correlated across the three population samples, some regions of the genome exhibit population-specific spikes or troughs in rho that are too large to be explained by sampling. This result is consistent with differences in the genealogical depth of local genomic regions, a finding that has direct bearing on the design and utility of LD mapping and on the National Institutes of Health HapMap project.  相似文献   
68.
The prpB gene of Salmonella enterica serovar Typhimurium LT2 encodes a protein with 2-methylisocitrate (2-MIC) lyase activity, which cleaves 2-MIC into pyruvate and succinate during the conversion of propionate to pyruvate via the 2-methylcitric acid cycle. This paper reports the isolation and kinetic characterization of wild-type and five mutant PrpB proteins. Wild-type PrpB protein had a molecular mass of approximately 32 kDa per subunit, and the biologically active enzyme was comprised of four subunits. Optimal 2-MIC lyase activity was measured at pH 7.5 and 50 degrees C, and the reaction required Mg(2+) ions; equimolar concentrations of Mn(2+) ions were a poor substitute for Mg(2+) (28% specific activity). Dithiothreitol (DTT) or reduced glutathione (GSH) was required for optimal activity; the role of DTT or GSH was apparently not to reduce disulfide bonds, since the disulfide-specific reducing agent Tris(2-carboxyethyl)phosphine hydrochloride failed to substitute for DTT or GSH. The K(m) of PrpB for 2-MIC was measured at 19 micro M, with a k(cat) of 105 s(-1). Mutations in the prpB gene were introduced by site-directed mutagenesis based on the active-site residues deemed important for catalysis in the closely related phosphoenolpyruvate mutase and isocitrate lyase enzymes. Residues D58, K121, C123, and H125 of PrpB were changed to alanine, and residue R122 was changed to lysine. Nondenaturing polyacrylamide gel electrophoresis indicated that all mutant PrpB proteins retained the same oligomeric state of the wild-type enzyme, which is known to form tetramers. The PrpB(K121A), PrpB(H125A), and PrpB(R122K) mutant proteins formed enzymes that had 1,050-, 750-, and 2-fold decreases in k(cat) for 2-MIC lyase activity, respectively. The PrpB(D58A) and PrpB(C123A) proteins formed tetramers that displayed no detectable 2-MIC lyase activity indicating that both of these residues are essential for catalysis. Based on the proposed mechanism of the closely related isocitrate lyases, PrpB residue C123 is proposed to serve as the active site base, and residue D58 is critical for the coordination of a required Mg(2+) ion.  相似文献   
69.
The Azotobacter vinelandii NafY protein (nitrogenase accessory factor Y) is able to bind either to the iron molybdenum cofactor (FeMo-co) or to apodinitrogenase and is believed to facilitate the transfer of FeMo-co into apodinitrogenase. The NafY protein has two domains: an N-terminal domain (residues Met1-Leu98) and a C-terminal domain (residues Glu99-Ser232), referred here to as the "core domain." The core domain of NafY is shown here to be capable of binding the FeMo cofactor of nitrogenase but unable to bind to apodinitrogenase in the absence of the first domain. The three-dimensional molecular structure of the core domain of NafY has been solved to 1.8-A resolution, revealing that the protein consists of a mixed five-stranded beta-sheet flanked by five alpha-helices that belongs to the ribonuclease H superfamily. As such, this represents a new fold capable of binding FeMo-co, where the only previous example was that seen in dinitrogenase.  相似文献   
70.
In Staphylococcus aureus, the agr locus is responsible for controlling virulence gene expression via quorum sensing. As the blockade of quorum sensing offers a novel strategy for attenuating infection, we sought to gain novel insights into the structure, activity and turnover of the secreted staphylococcal autoinducing peptide (AIP) signal molecules. A series of analogues (including the L-alanine and D-amino acid scanned peptides) was synthesized to determine the functionally critical residues within the S. aureus group I AIP. As a consequence, we established that (i) the group I AIP is inactivated in culture supernatants by the formation of the corresponding methionyl sulphoxide; and (ii) the group I AIP lactam analogue retains the capacity to activate agr, suggesting that covalent modification of the AgrC receptor is not a necessary prerequisite for agr activation. Although each of the D-amino acid scanned AIP analogues retained activity, replacement of the endocyclic amino acid residue (aspartate) located C-terminally to the central cysteine with alanine converted the group I AIP from an activator to a potent inhibitor. The screening of clinical S. aureus isolates for novel AIP groups revealed a variant that differed from the group I AIP by a single amino acid residue (aspartate to tyrosine) in the same position defined as critical by alanine scanning. Although this AIP inhibits group I S. aureus strains, the producer strains possess a functional agr locus dependent on the endogenous peptide and, as such, constitute a fourth S. aureus AIP pheromone group (group IV). The addition of exogenous synthetic AIPs to S. aureus inhibited the production of toxic shock syndrome toxin (TSST-1) and enterotoxin C3, confirming the potential of quorum-sensing blockade as a therapeutic strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号