首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   30篇
  391篇
  2024年   1篇
  2023年   8篇
  2022年   14篇
  2021年   31篇
  2020年   15篇
  2019年   14篇
  2018年   19篇
  2017年   9篇
  2016年   17篇
  2015年   22篇
  2014年   31篇
  2013年   22篇
  2012年   27篇
  2011年   30篇
  2010年   19篇
  2009年   15篇
  2008年   22篇
  2007年   24篇
  2006年   15篇
  2005年   14篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1993年   1篇
  1981年   1篇
排序方式: 共有391条查询结果,搜索用时 11 毫秒
101.
102.
Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB) imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning.  相似文献   
103.
104.
105.
Leptin purportedly plays an important role in pubertal development in a number of mammalian species. Adult leptin-deficient (ob/ob) female mice are infertile, but the mechanisms responsible for the reproductive failure have not been fully elucidated. The major objective of the current study was to assess the effects of a leptin deficiency on ovarian folliculogenesis and apoptosis. Beginning at 4 wk of age, control (n = 8) and ob/ob (n = 7) mice were weighed and examined daily for vaginal opening. After 3 wk the mice were killed, and the reproductive organs were weighed. Ovaries were paraffin-embedded for hematoxylin and eosin histology, TUNEL assay, and immunohistochemistry for Fas, Fas ligand (FasL), and proliferating cell nuclear antigen (PCNA). Vaginal opening was delayed, uteri were smaller, and the number of primordial follicles and total number of ovarian follicles were subnormal in ob/ob animals. Leptin-deficient animals also had a higher number of atretic follicles than controls. Granulosa cells (predominantly in preantral and early antral follicles) of ob/ob mice exhibited increased apoptotic activity as documented by TUNEL assay and elevated expression of the apoptotic markers Fas and FasL, compared with that in control animals. Ovarian expression of PCNA, a marker of DNA replication, repair, or both, did not differ between ob/ob and control mice. The data suggest that a leptin deficiency in mice is associated with impaired folliculogenesis, which results in increased follicular atresia. This impairment may be one of the causative components of infertility in leptin-deficient animals.  相似文献   
106.
Reversible phosphorylation of the SR family of splicing factors plays an important role in pre-mRNA processing in the nucleus. Interestingly, the SRPK family of kinases specific for SR proteins is localized in the cytoplasm, which is critical for nuclear import of SR proteins in a phosphorylation-dependent manner. Here, we report molecular dissection of the mechanism involved in partitioning SRPKs in the cytoplasm. Common among all SRPKs, the bipartite kinase catalytic core is separated by a unique spacer sequence. The spacers in mammalian SRPK1 and SRPK2 share little sequence homology, but they function interchangeably in restricting the kinases in the cytoplasm. Removal of the spacer in SRPK1 had little effect on the kinase activity, but it caused a quantitative translocation of the kinase to the nucleus and consequently induced aggregation of splicing factors in the nucleus. Rather than carrying a nuclear export signal as suggested previously, we found multiple redundant signals in the spacer that act together to anchor the kinase in the cytoplasm. Interestingly, a cell cycle signal induced nuclear translocation of the kinase at the G2/M boundary. These findings suggest that SRPKs may play an important role in linking signaling to RNA metabolism in higher eukaryotic cells.  相似文献   
107.
The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.  相似文献   
108.
The interconversion of actin between monomeric and polymeric forms is a fundamental process in cell biology that is incompletely understood, in part because there is no high-resolution structure for filamentous actin. Several models have been proposed recently; identifying structural and dynamic differences between them is an essential step toward understanding actin dynamics. We compare three of these models, using coarse-grained analysis of molecular dynamics simulations to analyze the differences between them and evaluate their relative stability. Based on this analysis, we identify key motions that may be associated with polymerization, including a potential energetic barrier in the process. We also find that actin subunits are polymorphic; during simulations they assume a range of configurations remarkably similar to those seen in recent cryoEM images.  相似文献   
109.
110.
Amino acids are potent regulators of muscle protein synthesis and breakdown and have received considerable attention for the treatment of muscle wasting conditions. Arginine is critically involved in numerous physiological functions including providing substrate for the production of creatine, urea and nitric oxide (NO) and in the synthesis of new proteins. However, little is known about the direct effects of arginine on skeletal muscle protein synthesis during catabolic conditions. The aims of this study were to determine whether exogenous arginine could protect skeletal muscle cells from wasting directly and whether this effect was dependent on production of NO and/or activation of the rapamycin-sensitive mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. To explore these aims, we deprived mature C2C12 myotubes from nutrients and growth factors by incubating them in HEPES buffered saline with arginine or equimolar concentrations of alanine (control). Our results show that arginine: increased the ratio of phosphorylated to total mTOR (146 %), S6 (40 %) and 4EBP1 (69 %); increased protein synthesis (69 %) during the first hour of treatment; and increased myotube diameter by ~15 %. Experiments using the NO synthase inhibitor l-NG-Nitroarginine Methyl Ester showed a NO-independent protection from muscle wasting. On the other hand, the mTORC1 inhibitor rapamycin prevented increases in phosphorylated S6, protein synthesis and myotube diameter. The activation of mTORC1 and protein synthesis by arginine was not associated with changes in the phosphorylation status of Akt, but rather increased the expression of the amino acid-sensitive type III PI3-kinase Vps34 signalling protein. These data support a direct role for arginine in the regulation of mTORC1 in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号