首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   16篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2001年   1篇
  1998年   4篇
  1991年   1篇
  1989年   3篇
  1972年   1篇
排序方式: 共有107条查询结果,搜索用时 22 毫秒
61.
62.
Excitotoxicity due to glutamate receptors (GluRs) overactivation is a leading mechanism of oxidative damage and neuronal death in various diseases. We have shown that dapsone (DDS) was able to reduce both neurotoxicity and seizures associated to the administration of kainic acid (KA), an agonist acting on AMPA/KA receptors (GluK1–GluK5). Recently, it has been shown that phenobarbital (PB) is also able to reduce epileptic activity evoked by that receptor. In the present study, we tested the antioxidative, anticonvulsive and neuroprotective effects of DDS and PB administered alone or in combination upon KA toxicity to rats. Results showed that KA increased lipid peroxidation and diminished reduced glutathione (GSH), 24 h after KA administration and both drugs in combination or individually inhibited these events. Likewise, KA promotes mortality and this event was antagonized by effect of both treatments. Additionally, the behavioral evaluation showed that DDS and PB administered alone or in combination decreased the number of limbic seizures and reduced the percentage of animals showing tonic–clonic seizures versus the control group, which was administered only with KA. Finally, our study demonstrated that all of the treatments prevented the neuronal death of the pyramidal cell layer of hippocampal CA-3. In conclusion, the treatment with DDS and PB administrated alone or in combination exerted antioxidant, anticonvulsive and neuroprotective effects against the neurotoxicity induced by KA in rats, but their effects were not additive. Thus, it may be good options of treatment in diseases such as epilepsy and status epilepicus, administered separately.  相似文献   
63.
64.
The prefrontal cortex (PFC) is a brain region responsible for executive functions including working memory, impulse control and decision making. The loss of these functions may ultimately lead to addiction. Using histological analysis combined with stereological technique, we demonstrated that the PFC is more vulnerable to chronic alcohol-induced oxidative stress and neuronal cell death than the hippocampus. This increased vulnerability is evidenced by elevated oxidative stress-induced DNA damage and enhanced expression of apoptotic markers in PFC neurons. We also found that one-carbon metabolism (OCM) impairment plays a significant role in alcohol toxicity to the PFC seen from the difference in the effects of acute and chronic alcohol exposure on DNA repair and from exaggeration of the damaging effects upon additional OCM impairment in mice deficient in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR). Given that damage to the PFC leads to loss of executive function and addiction, our study may shed light on the mechanism of alcohol addiction.  相似文献   
65.
Exploration of the ability of Coleus blumei to accumulate aluminum   总被引:1,自引:0,他引:1  
In this study, the capacity of an ornamental species (Coleus blumei) to extract and accumulate aluminum was evaluated. The analyzed parameters were amount of soluble aluminum, radical growth, tolerance rate, bioaccumulation factor, and tissues aluminum concentration. The main limiting factor for aluminum accumulation is the availability of the metal. However, Coleus blumei can grow and accumulate up to 1445.7 mg kg(-1) of aluminum dry base. This plant can play an important role in the treatment of polluted water with metals, since it can grow in conditions with a pH of around 4.8. The aluminum tolerance rate showed for this plant ranged between 18.8% and 25%. Therefore, this species behaves as a non-accumulator, even though the bioaccumulation factor was 3098.5 L kg(-1).  相似文献   
66.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   
67.
68.
69.
70.
Extraction of lechuguilla fiber (Agave lecheguilla) is often the only source of income for some rural inhabitants in arid zones of Mexico. A model for biomass estimation of lechuguilla by nondestructive techniques was developed and then applied to evaluate whether traditional harvesting had an effect on (1) biomass production of the bud (part of the plant traditionally collected to obtain fiber) and (2) plant density. Six months after harvesting, biomass production was higher for buds of harvested plants than for buds of unharvested plants, but there were no differences 1 year after harvesting. Number of new plants was not affected by harvesting. Hence it appears that at least in the short term the common practice for extracting lechuguilla fiber does not affect population density, but significantly increases growth of central buds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号