首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   16篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2001年   1篇
  1998年   4篇
  1991年   1篇
  1989年   3篇
  1972年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
31.
Pneumococcal EJ-1 phage holin (EJh) is a hydrophobic polypeptide of 85 amino acid residues displaying lethal inner membrane disruption activity. To get an insight into holin structure and function, several peptides representing the different topological regions predicted by sequence analysis have been synthesized. Peptides were structurally characterized in both aqueous buffer and membrane environments, and their potential to induce membrane perturbation was determined. Among them, only the N-terminal predicted transmembrane helix increased the membrane permeability. This segment, only when flanked by the positive charged residues on its N-terminal side, which are present in the sequence of the full-length protein, folds into a major alpha-helix structure with a transmembrane preferential orientation. Fluorescein quenching experiments of N-terminal-labeled peptide evidenced the formation of oligomers of variable size depending on the peptideto-lipid molar ratio. The self-assembling tendency correlated with the formation of transmembrane pores that permit the release of encapsulated dextrans of various sizes. When analyzed by atomic force microscopy, peptide-induced membrane lesions are visualized as transbilayer holes. These findings are the first evidence for a lytic domain in holins and for the nature of membrane lesions caused by them.  相似文献   
32.
Dendritic cells provide a critical link between innate and acquired immunity. In this study, we demonstrate that the bacterial pathogen Salmonella enterica serovar Typhimurium can efficiently kill these professional phagocytes via a mechanism that is dependent on sipB and the Salmonella pathogenicity island 1-encoded type III protein secretion system. Rapid phosphatidylserine redistribution, caspase activation, and loss of plasma membrane integrity were characteristic of dendritic cells infected with wild-type Salmonella, but not sipB mutant bacteria. Caspase-1 was particularly important in this process because Salmonella-induced dendritic cell death was dramatically reduced in the presence of a caspase-1-specific inhibitor. Furthermore, dendritic cells obtained from caspase-1-deficient mice, but not heterozygous littermate control mice, were resistant to Salmonella-induced cytotoxicity. We hypothesize that Salmonella have evolved the ability to selectively kill professional APCs to combat, exploit, or evade immune defense mechanisms.  相似文献   
33.
34.
Cytotoxic T lymphocytes secrete a pore-forming cytolysin, perforin, that damages membranes of target cells. They also ligate Fas receptors on target cells and provoke apoptotic death. A20 (B lymphoma) and P815 (mastocytoma) cell lines were examined for their susceptibility to perforin-mediated lysis and to Fas-induced apoptosis after blockade of the cell cycle at the G1/S interface. Cells were arrested at the G1/S interface by inhibition of DNA synthesis with thymidine or aphidicolin. Subsequently, the treated cells were incubated either with CTL cytotoxic granules or the Fas-specific monoclonal antibody Jo-2. We show that arrest of the cell cycle at the G1/S interface markedly reduced the susceptibility of target cells to perforin-mediated lysis. In contrast, growth arrest with thymidine or aphidicolin increased susceptibility of A20 and P815 cells to Fas-mediated apoptosis. Susceptibility to lysis by intact CTLs was not affected significantly by blockade of target cells with aphidicolin or thymidine. When cells surviving exposure to perforin-containing granules were isolated on Ficoll density gradients and cell-cycle profiles were examined by flow cytometry, the ratio of G1 to G2cells increased among the survivors exposed to granules in contrast to controls incubated with buffer alone. The data suggest that cells in G1 phase of the cell cycle are less susceptible to the perforin pathway than cells in G2and S phases but are more susceptible to the Fas pathway. J. Cell. Biochem. 69:425–435, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
35.
ABSTRACT

The objective of the present study was to evaluate the sexual behavior of male rats kept under constant laboratory conditions for one entire year. A total of 213 sexually-inexperienced, male Wistar rats were maintained in controlled environmental conditions from birth. Depending the month in which they reached the age 3-month-old, the male rats were divided into 12 groups, one for each month of the year, and their sexual behavior was evaluated. Records of their sexual behavior were made from 09:00 to 11:00 hrs am. The following parameters were recorded: mount (latency and number), intromission (latency and number), ejaculation latency, and intromission rate. During the months of March, June, July and September, the rats showed lower mount and intromission latencies than in January, February, April, May and October-to-December. Similarly, in March, June, July and August they had higher copulatory efficiency than in January, February, April and December. Results suggest that male rats exposed to controlled environmental conditions could have endogenous mechanisms that regulate sexual behavior but are independent of seasonal environmental signals. The annual variability in the sexual behavior of male rats maintained under constant laboratory conditions should be considered when planning research and experiments.  相似文献   
36.
We have investigated the effect of sphingomyelin (SM) to ceramide enzymatic conversion on lipid bilayers using Giant Unilamellar Vesicles (GUVs). Sphingomyelinase was added externally to GUVs containing various proportions of SM. In situ asymmetrical SM conversion to ceramide reduced the area of one leaflet. In the absence of equilibration of all the lipids between the two leaflets, a mismatch between the two monolayers was generated. The tension generated by this mismatch was sufficient to trigger the formation of membrane defects and total vesicle collapse at relatively low percentage of SM ( approximately 5% mol). The formation of nanometric size defects was visualised by AFM in supported bilayers. Vesicle rupture was prevented in two circumstances: (a) in GUVs containing a mixture of l(d) and l(o) domains and (b) in GUVs containing 5% lyso-phosphatidylcholine. In both cases, the accumulation of enough ceramide (at initial SM concentration of 10%) allowed the formation of ceramide-rich domains. The coupling between the two asymmetrical monolayers and the condensing effect produced by the newly formed ceramide generated a tension that could underlie the mechanism through which ceramide formation induces membrane modifications observed during the late stages of apoptosis.  相似文献   
37.
The echinoderm nervous system is one of the least studied among invertebrates, partly because the tools available to study the neurobiology of this phylum are limited. We have now produced a monoclonal antibody (RN1) that labels a nervous system component of the sea cucumber Holothuria glaberrima. Western blots show that our antibody recognizes a major band of 66 kDa and a minor band of 53 kDa. Immunohistological experiments show that, in H. glaberrima, the antibody distinctly labels most of the known nervous system structures and some components that were previously unknown or little studied. A surprising finding was the labeling of nervous plexi within the connective tissue compartments of all organs studied. Double labeling with holothurian neuropeptides and an echinoderm synaptotagmin showed that RN1 labeled most, if not all, of the fibers labeled by these neuronal markers, but also a larger component of cells and fibers. The presence of a distinct connective tissue plexus in holothurians is highly significant since these organisms possess mutable connective tissues that change viscosity under the control of the nervous system. Therefore, the cells and fibers recognized by our monoclonal antibodies may be involved in controlling tensility changes in echinoderm connective tissue.  相似文献   
38.
39.

Background and aims

In Mediterranean steppes, Stipa tenacissima tussocks facilitate the establishment of vascular plants. We hypothesized that this effect may partially reflect the indirect interaction between Stipa tenacissima, biological soil crusts (BSC), and seeds.

Methods

We explored the relationship between BSC composition and soil surface conditions (surface roughness and hydrophobicity by using the water drop penetration time test), and seed germination and seedling rooting in a S. tenacissima steppe in southeastern Spain. We explored the causal factors of seed germination at two spatial scales and used SADIE index to represents the soil surface heterogeneity.

Results

Microsites strongly differed in BSC composition and soil surface conditions. Germination of two key species, Pistacia lentiscus and Brachypodium retusum, was not affected by BSC type. In contrast, rooting was lower on soil from open areas covered by BSC than on soil from open areas dominated by bare soil and soil collected under the tussocks. The effect was similar in both species. Lichens were probably responsible for the decrease in rooting.

Conclusions

Our results suggest that lichen cover and the cover of bare soil and mosses may hamper and facilitate rooting, respectively. By affecting seedling rooting, BSC may contribute to the facilitative effect of Stipa tenacissima.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号