首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1707篇
  免费   152篇
  2023年   14篇
  2022年   34篇
  2021年   61篇
  2020年   36篇
  2019年   49篇
  2018年   50篇
  2017年   49篇
  2016年   70篇
  2015年   109篇
  2014年   98篇
  2013年   113篇
  2012年   130篇
  2011年   138篇
  2010年   70篇
  2009年   67篇
  2008年   86篇
  2007年   89篇
  2006年   64篇
  2005年   60篇
  2004年   51篇
  2003年   48篇
  2002年   36篇
  2001年   32篇
  2000年   32篇
  1999年   29篇
  1998年   13篇
  1997年   14篇
  1996年   11篇
  1995年   12篇
  1994年   15篇
  1992年   13篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   3篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1968年   4篇
排序方式: 共有1859条查询结果,搜索用时 15 毫秒
161.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   
162.
Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes   总被引:1,自引:0,他引:1  
The first female meiotic division (meiosis I, MI) is uniquely prone to chromosome segregation errors through non-disjunction, resulting in trisomies and early pregnancy loss. Here, we show a fundamental difference in the control of mammalian meiosis that may underlie such susceptibility. It involves a reversal in the well-established timing of activation of the anaphase-promoting complex (APC) by its co-activators cdc20 and cdh1. APC(cdh1) was active first, during prometaphase I, and was needed in order to allow homologue congression, as loss of cdh1 speeded up MI, leading to premature chromosome segregation and a non-disjunction phenotype. APC(cdh1) targeted cdc20 for degradation, but did not target securin or cyclin B1. These were degraded later in MI through APC(cdc20), making cdc20 re-synthesis essential for successful meiotic progression. The switch from APC(cdh1) to APC(cdc20) activity was controlled by increasing CDK1 and cdh1 loss. These findings demonstrate a fundamentally different mechanism of control for the first meiotic division in mammalian oocytes that is not observed in meioses of other species.  相似文献   
163.
Here, we show that the murine neurodegenerative disease mdf (autosomal recessive mouse mutant 'muscle deficient') is caused by a loss-of-function mutation in Scyl1, disrupting the expression of N-terminal kinase-like protein, an evolutionarily conserved putative component of the nucleocytoplasmic transport machinery. Scyl1 is prominently expressed in neurons, and enriched at central nervous system synapses and neuromuscular junctions. We show that the pathology of mdf comprises cerebellar atrophy, Purkinje cell loss and optic nerve atrophy, and therefore defines a new animal model for neurodegenerative diseases with cerebellar involvement in humans.  相似文献   
164.
The predaceous mite Amblyseius herbicolus (Chant) is the second most abundant phytoseiid on coffee plants (Coffea arabica L), after Euseius alatus DeLeon, in Lavras, MG, Brazil, associated to the vector of the coffee ring spot virus, Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae). Its life history was studied taking into account biological aspects, life table, predatory activity and functional and numerical responses in relation to the density of the prey. The adult female has longevity of 38 days when supplied with B. phoenicis. The intrinsic rate of population increase (r m) was 0.150 and the mean generation time (T) 25.3 days. The population doubles every 4.6 days. Thirty mites B. phoenicis /3-cm diameter coffee leaf arenas were separately offered to one specimen of each predator phase. Adult females were more efficient in killing all developmental phases of B. phoenicis, followed by the nymph stages. For the functional and numerical responses studies, from 0.14 to 42.3 immature specimens of the prey /cm(2) of arena were submitted to the predator, the preferred phase for predation. Predation and the oviposition of A. herbicolus increased with increasing prey density, with a positive and highly significant correlation. Regression analysis suggests a functional type II response, with a maximum daily predation near 35 B. phoenicis /cm(2) /one adult female.  相似文献   
165.

The species Piper hispidinervum, Piper aduncum, and Piper affinis hispidinervum have essential oils with high levels of safrole, dillapiole, and sarisan, respectively. Safrole is important for pharmaceutical and chemical industries, while dillapiole and sarisan are promising compounds to control insects and fungi. These species are very similar morphologically and their taxonomy is controversial. Divergent hypotheses consider P. aduncum and P. hispidinervum either as a single species or as distinct taxa, while P. affinis hispidinervum is inferred to be a natural hybrid or a chemotype of P. hispidinervum. Delimiting the taxonomic boundaries would be helpful for germplasm conservation and breeding programs. This study aimed to undertake a detailed analysis of P. aduncum, P. hispidinervum, and P. affinis hispidinervum karyotype and rDNA sites. Genomic in situ hybridization (GISH) was used to establish genomic homology among species and to test the natural hybridization hypothesis for origin of P. affinis hispidinervum. Karyotype traits were similar for all three species: 2n = 26 small chromosomes, predominantly metacentric. All three species exhibited CMA+ bands on the secondary constriction of chromosome pair 4. A size-heteromorphic 35S rDNA site was co-localized with the CMA+ band. A 5S rDNA site was located in the proximal region of chromosome pair 7. The patterns of genomic hybridization revealed that the repetitive DNA fraction of the species is highly similar in terms of proportion of genome, sequence type, and distribution. Our findings did not allow us to differentiate the three species and point to the importance of deeper genomic studies to elucidate the taxonomic controversy.

  相似文献   
166.

The present study describes a new regeneration system based on somatic embryogenesis from mature endosperm Passiflora cincinnata Mast. cultures. Moreover, the morpho-agronomic and phenological traits, as well as enzymatic activity of regenerated triploid emblings are compared to those of diploids. Mature endosperms were cultured on Murashige and Skoog medium supplemented with various concentrations (4.5–45.2 µM) of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 μM 6-benzylaminopurine (BA). No plant growth regulators were included in the control group. Embryogenic calli were observed only in treatments supplemented with 13.6 and 18.1 µM 2,4-D?+?4.5 µM BA, with the highest number of somatic embryos per explant and regenerated plants (emblings) obtained with 18.1 µM 2,4-D. Most emblings (70%) were triploid (2n?=?3x?=?27), with a DNA amount (4.38 pg) similar to that of endosperm and 1.5 times greater than in diploid P. cincinnata seedlings (2n?=?2x?=?18), that contained 2.98 pg of DNA. While the number of organs and/or structures was akin to that in diploids, triploid emblings generally exhibited larger and longer vegetative and floral structures. The flower lifespan was also slightly altered by triploidy, nectar concentration was 27% higher, and the activity of plant defense enzymes β-1,3-glucanase and polyphenol oxidase was 29.8% and 22.1% higher. This study describes a new regeneration system for the production of phenotypic variants of this ornamental passion fruit species, opening new perspectives for future studies on genetic passion fruit breeding.

  相似文献   
167.
Mycopathologia - Feline sporotrichosis has emerged as an important public health issue in some countries, especially Brazil. Currently, zoonotic transmission of Sporothrix brasiliensis by domestic...  相似文献   
168.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号