首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   20篇
  284篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   12篇
  2014年   11篇
  2013年   11篇
  2012年   27篇
  2011年   24篇
  2010年   15篇
  2009年   14篇
  2008年   14篇
  2007年   13篇
  2006年   9篇
  2005年   22篇
  2004年   22篇
  2003年   9篇
  2002年   15篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有284条查询结果,搜索用时 0 毫秒
31.
Ozone Quenching Properties of Isoprene and Its Antioxidant Role in Leaves   总被引:24,自引:0,他引:24  
Isoprene is formed in and emitted by plants and the reason for this apparent carbon waste is still unclear. It has been proposed that isoprene stabilizes cell and particularly chloroplast thylakoid membranes. We tested if membrane stabilization or isoprene reactivity with ozone induces protection against acute ozone exposures. The reduction of visible, physiological, anatomical, and ultrastructural (chloroplast) damage shows that clones of plants sensitive to ozone and unable to emit isoprene become resistant to acute and short exposure to ozone if they are fumigated with exogenous isoprene, and that isoprene-emitting plants that are sensitive to ozone do not suffer damage when exposed to ozone. Isoprene-induced ozone resistance is associated with the maintenance of photochemical efficiency and with a low energy dissipation, as indicated by fluorescence quenching. This suggests that isoprene effectively stabilizes thylakoid membranes. However, when isoprene reacts with ozone within the leaves or in a humid atmosphere, it quenches the ozone concentration to levels that are less or non-toxic for plants. Thus, protection from ozone in plants fumigated with isoprene may be due to a direct ozone quenching rather than to an induced resistance at membrane level. Irrespective of the mechanism, isoprene is one of the most effective antioxidants in plants.  相似文献   
32.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
33.
Summary Clostridium acetobutylicum ATCC 824 was submitted to repeated subculturing at 24-hour intervals for 218 days. The organism retained its ability to form solvents, although the fermentation slowly became increasingly acidogenic during the first 200 days. Except for the initial spore inoculum, the cultures were not subjected to heat shocking between the serial transfers. When the inoculum volume was doubled from 3.3% to 6.7% after 200 days of subculturing, the product formation pattern quickly shifted back from acids to primarily butanol. Acetone production also resumed after being undetectable for more than 50 days. The relative formation of acetate and ethanol remained nearly constant throughout the experiments, while the formation of butyrate mirrored that of butanol.  相似文献   
34.
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.  相似文献   
35.
We analyzed the genetic structure and diversity of Qualea grandiflora Mart., the most abundant woody species in the Brazilian Cerrado. Eight microsatellite loci were used to analyze samples from four populations subjected to different types of anthropic pressure, distributed throughout the state of São Paulo in the regions of Assis, Brotas, Itirapina and Pedregulho. Results indicated a mean number of 12 alleles per locus, but only six effective alleles. Alleles private to particular populations and rare alleles were also detected. An excess of homozygotes and moderate levels of inbreeding were observed. No clones were identified. All populations departed from Hardy–Weinberg equilibrium (p < 0.05). Spatial structure was observed in the distribution of specimens in distance classes ranging from 30 to 40 km and three genetic clusters were identified, with genotypes in the Pedregulho population differing from the others by up to 90 %. The influence of the Wahlund effect on the studied populations lies between 8.5 and 53.3 %. Estimates of effective population size were low (<10), and the minimum viable area for conservation in the short-, medium- and long-term was estimated to be between 4 and 184 ha. Gene flow was high enough to counter the effects of genetic drift. The genetic diversity and divergence between the studied populations indicated that the Pedregulho population should be considered an Evolutionary Significant Unit and a Management Unit.  相似文献   
36.
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.  相似文献   
37.
We have solved the NMR structure of the 31-nucleotide (nt) apoB mRNA stem-loop, a substrate of the cytidine deaminase APOBEC1. We found that the edited base located at the 5' end of the octa-loop is stacked between two adenosines in both the unedited (cytidine 6666) and the edited (uridine 6666) forms and that the rest of the loop is unstructured. The 11-nt "mooring" sequence essential for editing is partially flexible although it is mostly in the stem of the RNA. The octa-loop and the internal loop in the middle of the stem confer this flexibility. These findings shed light on why APOBEC1 alone cannot edit efficiently the cytidine 6666 under physiological conditions, the editing base being buried in the loop and not directly accessible. We also show that APOBEC1 does not specifically bind apoB mRNA and requires the auxiliary factor, APOBEC1 complementary factor (ACF), to edit specifically cytidine 6666. The binding of ACF to both the mooring sequence and APOBEC1 explains the specificity of the reaction. Our NMR study lead us to propose a mechanism in which ACF recognizes first the flexible nucleotides of the mooring sequence (the internal loop and the 3' end octa-loop) and subsequently melts the stem-loop, exposing the amino group of the cytidine 6666 to APOBEC1. Thus, the flexibility of the mooring sequence plays a central role in the RNA recognition by ACF.  相似文献   
38.
The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM-RNA or RRM-protein), we reviewed the structure-function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM-nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM beta-sheet, the two external beta-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein-RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.  相似文献   
39.
40.
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号