首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   9篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   14篇
  2014年   5篇
  2013年   15篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   9篇
  2008年   9篇
  2007年   11篇
  2006年   18篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1974年   2篇
排序方式: 共有184条查询结果,搜索用时 187 毫秒
161.
The computational characterisation of the molecular complexes of N-methyl imidazoline-2-thione (methimazole) and the related saturated analogue N-methyl imidazolidine-2-thione with Br2 and I2 is carried out using quantum mechanical electronic structure methods. Two kinds of molecular connectivity have been examined. The first displays a collinear S–X–X geometry (X = Br, I) and leads to charge-transfer (CT) type adducts, possible in two stereoisomeric conformations depending on the direction of the X2-axis, either planar or perpendicular to the NCS plane. The second kind corresponds to T-shaped hypervalent complexes in which sulphur is connected to both the X atoms forming the linear X–S–X arrangement. The structural changes, the spectroscopic findings, the natural bond orbital analysis and the examination of the molecular orbital second-order perturbation energies give interesting information about the nature of the halogen bonding interaction between the electron-donor organic species and the electron-acceptor dihalogen molecule. Similar trends are followed by the energy and relative stability results including basis set superposition error corrections, which show the larger stabilisation of the planar CT conformers of both dihalogens vs. the perpendicular configurations. They also indicate the higher stability of the T-shaped bromine complexes relative to the CT species, opposite to the energy order of the corresponding diiodine adducts. A critical comparison is carried out with literature results on similar systems.  相似文献   
162.
Glioblastoma, (grade IV astrocytoma), is characterized by rapid growth and resistance to treatment. Identification of markers of aggressiveness in this tumor could represent new therapeutic targets. Interleukins (IL)-6 and IL-10 may be considered as possible candidates, regulating cell growth, resistance to chemotherapy and angiogenesis. ELISPOT method provides a useful tool for the determination of the exact cell number of peripheral lymphocytes secreting a specific cytokine. IL-6 and IL-10 secretion levels were determined using ELISPOT methodology in peripheral blood mononuclear cells of 18 patients with astrocytic neoplasms (3 grade II and 15 grade IV), in parallel with 18 healthy controls. Additionally, immunohistochemical expression of these two cytokines was performed in paraffin-embedded neoplastic tissue in 12 of these patients. The secretion of IL-6 from peripheral monocytes was significantly higher in glioma patients compared to controls (P = 0.0003). In addition, IL-10 secretion from peripheral mononuclear and tumor cells of glioma patients was also higher as compared to healthy controls (P = 0.0002). Based on immunohistochemical staining, IL-6 expression was localized in tumor cells and macrophages as well as in areas of large ischemic necrosis, while the major source of IL-10 expression in glioblastomas was the microglia/macrophage cells. It is suggested that IL-10 contributes to the progression of astrocytomas by suppressing the patient’s immune response, whereas IL-6 provides an additional growth advantage. This study demonstrates for the first time the usefulness of ELISPOT in estimating the secretion of IL-6 and IL-10 from peripheral blood and the correlation of their expression in neoplastic cells. Christina Piperi and Penelope Korkolopoulou have equally contributed to this work.  相似文献   
163.
Hexanchus nakamurai is a deep-water species, with very little scientific information. This study confirms the distribution of the species in the most eastern region of the Mediterranean Sea, Levantine Sea, in addition to providing some biological information from four pregnant individuals, which is being reported for the first time in the Mediterranean Sea. A total of four individuals were bycaught, in two sets on opposite coasts, three on the 13th of May 2020 from the western coast, and an individual on the 14th June 2020 from east coast of the island of Cyprus. The four specimens, all pregnant females, measured between 107 and 116 cm in total length and between 4,330 and 4,960 g in weight. All specimens were in early pregnancy according to the level of embryo development, which confirms that the size at maturity is smaller than previously reported. In the stomachs, remains of the hake Merluccius merluccius, the cephalopod Loligo vulgaris and two unidentified species of Hirudinea (Annelida) were found. This study provides important new information on the Mediterranean distribution of a globally rare and data deficient species, including an expansion of its known range, dietary preferences and insights of its reproduction biology; the first pregnant females reported in the Mediterranean Sea.  相似文献   
164.
More than 30 years of research have revealed that the dynamic nanomotor SecA is a central player in bacterial protein secretion. SecA associates with the SecYEG channel and transports polypeptides post-translationally to the trans side of the cytoplasmic membrane. It comprises a helicase-like ATPase core coupled to two domains that provide specificity for preprotein translocation. Apart from SecYEG, SecA associates with multiple ligands like ribosomes, nucleotides, lipids, chaperones and preproteins. It exerts its essential contribution in two phases. First, SecA, alone or in concert with chaperones, helps mediate the targeting of the secretory proteins from the ribosome to the membrane. Next, at the membrane it converts chemical energy to mechanical work and translocates preproteins through the SecYEG channel. SecA is a highly dynamic enzyme, it exploits disorder–order kinetics, swiveling and dissociation of domains and dimer to monomer transformations that are tightly coupled with its catalytic function. Preprotein signal sequences and mature domains exploit these dynamics to manipulate the nanomotor and thus achieve their export at the expense of metabolic energy. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   
165.
166.
Determination of the subcellular localization of an unknown protein is a major step towards the elucidation of its function. Lately, the expression of proteins fused to fluorescent markers has been very popular and many approaches have been proposed to express these proteins. Stable transformation using Agrobacterium tumefaciens generates stable lines for downstream experiments, but is time-consuming. If only colocalization is required, transient techniques save time and effort. Several methods for transient assays have been described including protoplast transfection, biolistic bombardment, Agrobacterium tumefaciens cocultivation and infiltration. In general colocalizations are preferentially performed in intact tissues of the same species, resembling the native situation. High transformation rates were described for cotyledons of Arabidopsis, but never for roots. Here we report that it is possible to transform Arabidopsis root epidermal cells with an efficiency that is sufficient for colocalization purposes.Key words: Arabidopsis, GFP-fusions, protein localization, root, transient transformationSince the release of the Arabidopsis thaliana genome sequence plant biologists set the goal to elucidate the functions of all coded genes. Apart from the spatio-temporal expression patterns of genes, the subcellular localization of gene products can play an essential role in deciphering their function. Classical immunological approaches to localize proteins can be hindered by cross-reactivity, time-consuming generation of antibodies and the low temporal resolution. Expression of tagged proteins forms a suitable alternative. Lately, fusions with fluorescent proteins in combination with confocal (CLSM)1 or spinning disc microscopy2 allow real time protein localization and even subcellular trafficking at high resolution. An overview of fluorescent tagging approaches can be found elsewhere.3Currently several techniques to introduce the coding region for a tagged protein in a plant are available. The generation of stable lines transformed by Agrobacterium tumefaciens offers a continuous source of plant material, but it is time-consuming especially when only colocalization experiments are required. Transient assays, on the other hand, offer the advantage of being fast and amenable to high throughput strategies. Each of these techniques, however, has some limitations and drawbacks. Particle bombardment (biolistics) 46 for example circumvents the host specificity of Agrobacterium strains, but requires expensive equipment. Moreover, it is rather disruptive and imposes a significant stress upon the plants, possibly influencing the results. Protoplasts lack a cell wall and protoplast transformation7,8 is therefore not suitable for certain experiments related to cell wall proteins or when interactions between cells on tissue level might be important.9 Moreover, protoplasts have lost their identity which might be critical for the correct functioning of certain transgenic constructs. Agrobacterium infiltration of tobacco leaves10 is regularly used and represents an efficient, fast and relatively easy transformation technique. However, tobacco leaves easily show autofluoresence due to tissue damage as a result of experimental manipulations. As it has been reported that some protein fusions expressed in an heterologous system localize to different subcellular localizations11 it is advisable not to use tobacco when localizing Arabidopsis proteins. Leaf infiltrations have been performed in Arabidopsis,12 but apparently their leaves are much more prone to mechanical damage and the leaf developmental stage is critical, complicating this technique. Cocultivation of Agrobacterium with seedlings offers a rapid and efficient approach applicable to many mono and dicot species. It was reported to work efficiently in Arabidopsis cotyledons, but not in roots.9 As an alternative method, Agrobacterium infiltration of Arabidopsis seedlings11 seems an efficient technique for transient expression. However, expression in root cells could not be obtained. Colocalizations are required in the native cells or tissue for the correct localization of an unknown protein or proteins that need interaction partners. As a consequence this technique can not be reliably used when root expressed gene products are studied. Here we show evidence that it is possible to use the described technique11 to induce transient expression in Arabidopsis roots.We used the Agrobacterium infiltration of Arabidopsis seedlings technique11 to colocalize several C-terminal (S65T)-sGFP fusions generated in the plant binary vector pGWB6.13 Each construct was transformed into Agrobacterium tumefaciens (C59C1RifR) containing the helper plasmid pMP90. Subsequently different stable marker lines, wild type Arabidopsis (Col-0) bearing mCherry fusion constructs,14 were transiently transformed.11 After 2 or 3 days seedlings were studied using CLSM. Besides being expressed in cotyledons fusion proteins were clearly observed in root epidermis and root cap cells (Fig. 1A and B). As reported11 the transformation efficiency in cotyledons was considerably higher than in root cells. However, in each experiment we obtained a considerable amount of transformed root epidermal cells which was more than sufficient for colocalization studies (Fig. 2). It was remarkable that transformation was repeatedly successful in groups of cells, adjacent or close to each other.Open in a separate windowFigure 1Transient transformation of Arabidopsis root cells. Expression of the protein-GFP fusion product can be seen in the epidermal (A) and root cap cells (B) on fluorescence/transmission merged images. As seen in (A) high efficiencies of root transformation can be reached.Open in a separate windowFigure 2Colocalization of mCherry and GFP constructs. Confocal image of the mCherry fluorescence (A), the GFP signal (B) and the merged image (C).In contrast to what was reported earlier we show here that the Agrobacterium infiltration technique11 is perfectly capable of transiently transforming Arabidopsis root epidermal cells. It allows the transient production and study of proteins in their native environment, considerably increasing the reliability of such experiments. Additionaly the use of RFP marker constructs in colocalisation studies in the root is free of interference by the red background autofluorescence of chlorophyll.  相似文献   
167.
Reversed phase HPLC was used to assess the lipophilicity of a series pyrrolyl-acetic acid derivatives with aldose reductase inhibitory activity. The pH conditions were adjusted at 3.0 to investigate the behavior of the neutral species and at pH 7.4, at which the ionized form predominates, using phosphate and MOPS buffer. Retention was monitored in absence and in presence of different amounts of n-octanol in the mobile phase in order to explore the chromatographic conditions which best reproduce the octanol–water partition or distribution coefficients. The effect of n-octanol in retention was systematically studied and its role in lipophilicity assessment was evaluated. Nevertheless rather moderate regression equations were obtained, which deviated significantly from the ideal 1:1 correlation. No significant effect of buffer was observed. The appropriateness of retention factors to be used in correlation with aldose reductase inhibitory activity was further evaluated and compared to the efficiency of the corresponding octanol–water log P values.  相似文献   
168.
169.
Toll-like receptors (TLRs) are receptors of the innate immune system responsible for recognizing pathogen-associated molecular patterns. TLR2 seems to be the most promiscuous TLR receptor able to recognize the most diverse set of pathogen-associated patterns. Its promiscuity has been attributed to its unique ability to heterodimerize with TLRs 1 and 6 and, most recently, to its association with CD36 in response to diacylated lipoproteins. Thus, it seems that TLR2 forms receptor clusters in response to different microbial ligands. In this study we investigated TLR2 cell surface heterotypic interactions in response to different ligands as well as internalization and intracellular trafficking. Our data show that TLR2 forms heterodimers with TLR1 and TLR6 and that these heterodimer pre-exist and are not induced by the ligand. Upon stimulation by the specific ligand, these heterodimers are recruited within lipid rafts. In contrast, heterotypic associations of TLR2/6 with CD36 are not preformed and are ligand-induced. All TLR2 receptor clusters accumulate in lipid rafts and are targeted to the Golgi apparatus. This localization and targeting is ligand-specific. Activation occurs at the cell surface, and the observed trafficking is independent of signaling.  相似文献   
170.
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli.

Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号