首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3436篇
  免费   299篇
  3735篇
  2022年   35篇
  2021年   68篇
  2020年   43篇
  2019年   43篇
  2018年   51篇
  2017年   41篇
  2016年   84篇
  2015年   161篇
  2014年   194篇
  2013年   218篇
  2012年   280篇
  2011年   222篇
  2010年   165篇
  2009年   135篇
  2008年   164篇
  2007年   172篇
  2006年   165篇
  2005年   125篇
  2004年   140篇
  2003年   135篇
  2002年   135篇
  2001年   38篇
  2000年   31篇
  1999年   42篇
  1998年   43篇
  1997年   28篇
  1996年   28篇
  1995年   25篇
  1994年   31篇
  1993年   25篇
  1992年   28篇
  1991年   26篇
  1990年   30篇
  1989年   37篇
  1988年   21篇
  1987年   28篇
  1986年   20篇
  1985年   26篇
  1984年   35篇
  1983年   23篇
  1982年   19篇
  1981年   22篇
  1980年   21篇
  1979年   23篇
  1978年   18篇
  1977年   14篇
  1976年   23篇
  1975年   14篇
  1974年   16篇
  1971年   15篇
排序方式: 共有3735条查询结果,搜索用时 0 毫秒
991.
992.
993.

Background  

The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters.  相似文献   
994.

Background  

Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products.  相似文献   
995.
Although subcutaneous adipose tissue undergoes large deformations on a daily basis, there is no adequate mechanical model to describe the transfer of mechanical load from the skin throughout the tissue to deeper layers. In order to develop such a non-linear model, a set of experimental data is required. Accordingly, this study examines the long term behavior of adipose tissue under small strain and its response to various large strain profiles. The results show that the shear modulus dramatically increases to about an order of magnitude after a loading period between 250 and 1250 s, but returns to its initial value within 3 h of recovery from loading. In addition, it was observed that the stress–strain responses for various large strain history sequences are reproducible up to a strain of 0.15. For increasing strains, the stress decreases for subsequent loading cycles and, above 0.3 strain, tissue structure changes such that the stress becomes independent of the applied strain. From the results, it can be concluded that adipose tissue likely behaves as an (anti-) thixotropic material and that a Mooney–Rivlin model might be appropriate to simulate behavior at physiologically relevant high strains. However, before the model is developed more fully, further experimental research is needed to ratify that the material is (anti-)thixotropic.  相似文献   
996.
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction.  相似文献   
997.
998.
Recognition by scavenger receptor cysteine-rich domains on membrane proteins regulates innate and adaptive immune responses. Two receptors expressed primarily on T cells, CD5 and CD6, are linked genetically and are structurally similar, both containing three scavenger receptor cysteine-rich domains in their extracellular regions. A specific cell surface interaction for CD5 has been difficult to define at the molecular level because of the susceptibility of CD5 protein to denaturation. By using soluble CD5 purified at neutral pH to preserve biological activity, we show that CD5 mediates species-specific homophilic interactions. CD5 domain 1 only is involved in the interaction. CD5 mAbs that have functional effects in humans, rats, and mice block homophilic binding. Ag-specific responses by mouse T cells in vitro were increased when engagement of human CD5 domain 1 was inhibited by mutation or by IgG or Fab fragment from a CD5 mAb. This showed that homophilic binding results in productive engagement. Enhancement of polyclonal immune responses of rat lymph node cells by a Fab fragment from a CD5 mAb shown to block homophilic interactions provided evidence that the extracellular region of CD5 regulates inhibition in normal cells. These biochemical and in vitro functional assays provide evidence that the extracellular region of CD5 regulates immunity through species-specific homophilic interactions.  相似文献   
999.
Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli-activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号