首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3219篇
  免费   282篇
  2023年   13篇
  2022年   30篇
  2021年   65篇
  2020年   43篇
  2019年   41篇
  2018年   49篇
  2017年   40篇
  2016年   80篇
  2015年   159篇
  2014年   188篇
  2013年   211篇
  2012年   274篇
  2011年   207篇
  2010年   160篇
  2009年   128篇
  2008年   156篇
  2007年   168篇
  2006年   160篇
  2005年   122篇
  2004年   136篇
  2003年   129篇
  2002年   127篇
  2001年   32篇
  2000年   29篇
  1999年   40篇
  1998年   42篇
  1997年   27篇
  1996年   28篇
  1995年   23篇
  1994年   26篇
  1993年   23篇
  1992年   24篇
  1991年   20篇
  1990年   22篇
  1989年   30篇
  1988年   18篇
  1987年   17篇
  1986年   14篇
  1985年   23篇
  1984年   28篇
  1983年   18篇
  1982年   16篇
  1981年   22篇
  1980年   19篇
  1979年   15篇
  1978年   17篇
  1977年   12篇
  1976年   20篇
  1974年   14篇
  1971年   12篇
排序方式: 共有3501条查询结果,搜索用时 15 毫秒
181.
Bacterial resistance to beta-lactam/beta-lactamase inhibitor combinations by single amino acid mutations in class A beta-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A beta-lactamases, alterations at Ser-130 confer resistance to inactivation by the beta-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 beta-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G beta-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G beta-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 microm; S130G, 46.5 microm) and tazobactam (SHV-1, 0.07 microm; S130G, 4.2 microm) were observed. In contrast, the k(inact)s of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for beta-lactams and beta-lactamase inhibitors. These results underscore the mechanistic versatility of class A beta-lactamases and have implications for the design of novel beta-lactamase inhibitors.  相似文献   
182.
The 6-O sulfation states of cell surface heparan sulfate proteoglycans (HSPGs) are dynamically regulated to control the growth and specification of embryonic progenitor lineages. However, mechanisms for regulation of HSPG sulfation have been unknown. Here, we report on the biochemical and Wnt signaling activities of QSulf1, a novel cell surface sulfatase. Biochemical studies establish that QSulf1 is a heparan sulfate (HS) 6-O endosulfatase with preference, in particular, toward trisulfated IdoA2S-GlcNS6S disaccharide units within HS chains. In cells, QSulf1 can function cell autonomously to remodel the sulfation of cell surface HS and promote Wnt signaling when localized either on the cell surface or in the Golgi apparatus. QSulf1 6-O desulfation reduces XWnt binding to heparin and HS chains of Glypican1, whereas heparin binds with high affinity to XWnt8 and inhibits Wnt signaling. CHO cells mutant for HS biosynthesis are defective in Wnt-dependent Frizzled receptor activation, establishing that HS is required for Frizzled receptor function. Together, these findings suggest a two-state "catch or present" model for QSulf1 regulation of Wnt signaling in which QSulf1 removes 6-O sulfates from HS chains to promote the formation of low affinity HS-Wnt complexes that can functionally interact with Frizzled receptors to initiate Wnt signal transduction.  相似文献   
183.
Recent studies indicate that trichloroethylene (TCE) may be a male reproductive toxicant. It is metabolized by conjugation with glutathione and cytochrome p450-dependent oxidation. Reactive metabolites produced along both pathways are capable of forming protein adducts and are thought to be involved in TCE-induced liver and kidney damage. Similarly, in situ bioactivation of TCE and subsequent binding of metabolites may be one mechanism by which TCE acts as a reproductive toxicant. Cysteine-conjugate beta-lyase (beta-lyase) bioactivates the TCE metabolite dichlorovinyl cysteine (DCVC) to a reactive intermediate that is capable of binding cellular macromolecules. In the present study, Western blot analysis indicated that the soluble form of beta-lyase, but not the mitochondrial form, was present in the epididymis and efferent ducts. Both forms of beta-lyase were detected in the kidney. When rats were dosed with DCVC, no protein adducts were detected in the epididymis or efferent ducts, although adducts were present in the proximal tubule of the kidney. Trichloroethylene can also be metabolized and form protein adducts through a cytochrome p450-mediated pathway. Western blot analysis detected the presence of cytochrome p450 2E1 (CYP2E1) in the efferent ducts. Immunoreactive proteins were localized to efferent duct and corpus epididymis epithelia. Metabolism of TCE was demonstrated in vitro using microsomes prepared from untreated rats. Metabolism was inhibited 77% when efferent duct microsomes were preincubated with an antibody to CYP2E1. Dichloroacetyl adducts were detected in epididymal and efferent duct microsomes exposed in vitro to TCE. Results from the present study indicate that the cytochrome p450-dependent formation of reactive intermediates and the subsequent covalent binding of cellular proteins may be involved in the male reproductive toxicity of TCE.  相似文献   
184.
Li H  Graupner M  Xu H  White RH 《Biochemistry》2003,42(32):9771-9778
The protein product of the Methanococcus jannaschii MJ0768 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to catalyze the GTP-dependent addition of two l-glutamates to the l-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) to form F(420)-0-glutamyl-glutamate (F(420)-2). Since the reaction is the fifth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofE, the product of the cofE gene. Gel filtration chromatography indicates CofE is a dimer. The enzyme has no recognized sequence similarity to any previously characterized proteins. The enzyme has an absolute requirement for a divalent metal ion and a monovalent cation. Among the metal ions tested, a mixture of Mn(2+), Mg(2+), and K(+) is the most effective. CofE catalyzes amide bond formation with the cleavage of GTP to GDP and inorganic phosphate, likely involving the activation of the free carboxylate group of F(420)-0 to give an acyl phosphate intermediate. Evidence for the occurrence of this intermediate is presented. A reaction mechanism for the enzyme is proposed and compared with other members of the ADP-forming amide bond ligase family.  相似文献   
185.
Puroindolines, cationic and cystine-rich low molecular weight lipid binding proteins from wheat seeds, display unique foaming properties and antimicrobial activity. To unravel the mechanism involved in these properties, the interaction of puroindoline-a (PIN-a) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers was studied by coupling Langmuir-Blodgett and imaging techniques. Compression isotherms of PIN-a/phospholipid monolayers and adsorption of PIN-a to lipid monolayers showed that the protein interacted strongly with phospholipids, especially with the anionic DPPG. The electrostatic contribution led to the formation of a highly stable lipoprotein monolayer. Confocal laser scanning microscopy and atomic force microscopy showed that PIN-a was mainly inserted in the liquid-expanded phase of the DPPC, where it formed an aggregated protein network and induced the fusion of liquid-condensed domains. For DPPG, the protein partitioned in both the liquid-expanded and liquid-condensed phases, where it was aggregated. The extent of protein aggregation was related both to the physical state of phospholipids, i.e., condensed or expanded, and to the electrostatic interactions between lipids and PIN-a. Aggregation of PIN-a at air-liquid and lipid interfaces could account for the biological and technological properties of this wheat lipid binding protein.  相似文献   
186.
Analyses of the F(420)s present in Methanococcus jannaschii have shown that these cells contain a series of gamma-glutamyl-linked F(420)s capped with a single, terminal alpha-linked L-glutamate. The predominant form of F(420) was designated as alpha-F(420)-3 and represented 86% of the F(420)s in these cells. Analyses of Methanosarcina thermophila, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Mycobacterium smegmatis showed that they contained only gamma-glutamyl-linked F(420)s.  相似文献   
187.
The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO(2)Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO(2)Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO(2)Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO(2)Tyr content and increased levels of hepatic and renal protein NO(2)Tyr derivatives in SCD (21.4 +/- 2.6 and 37.5 +/- 7.8 ng/mg) versus wild type mice (8.2 +/- 2.2 and 10 +/- 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO(2)Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr(91), Tyr(198), and Tyr(240)) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.  相似文献   
188.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   
189.
Cancer patients may exhibit normal or altered circadian rhythms in tumor and healthy tissues. Four rhythms known to reflect circadian clock function were studied in 18 patients with metastatic colorectal cancer and good performance status. Rest-activity was monitored by wrist actigraphy for 72 h before treatment, and its circadian rhythm was estimated by an autocorrelation coefficient at 24h and a dichotomy index that compared the activity level when in and out of bed. Blood samples (9-11 time points, 3-6 h apart) were drawn on day 1 and day 4 of the first course of chronochemotherapy (5-fluorouracil: 800 mg/m2/day; folinic acid: 300 mg/m2/day; oxaliplatin: 25 mg/m2/day). Group 24h rhythms were validated statistically for plasma concentrations of melatonin, 6-alpha-sulfatoxymelatonin, and cortisol and for lymphocyte counts. Significant individual 24h rhythms were displayed in melatonin by 15 patients, cortisol by seven patients, lymphocytes by five patients, and prominent circadian rhythms in activity were displayed by 10 patients; only one patient exhibited significant rhythms in all the variables. The results suggest the rhythms of melatonin, cortisol, lymphocytes, and rest/activity reflect different components of the circadian system, which may be altered differently during cancer processes. Such 24h rhythm alterations appeared to be independent of conventional clinical factors.  相似文献   
190.
Guidance of primordial germ cell migration by the chemokine SDF-1   总被引:19,自引:0,他引:19  
The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号