首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7428篇
  免费   511篇
  国内免费   2篇
  7941篇
  2023年   42篇
  2022年   92篇
  2021年   158篇
  2020年   84篇
  2019年   128篇
  2018年   146篇
  2017年   136篇
  2016年   235篇
  2015年   349篇
  2014年   394篇
  2013年   507篇
  2012年   578篇
  2011年   571篇
  2010年   403篇
  2009年   310篇
  2008年   437篇
  2007年   430篇
  2006年   456篇
  2005年   387篇
  2004年   387篇
  2003年   345篇
  2002年   325篇
  2001年   74篇
  2000年   47篇
  1999年   70篇
  1998年   73篇
  1997年   81篇
  1996年   59篇
  1995年   36篇
  1994年   47篇
  1993年   39篇
  1992年   32篇
  1991年   31篇
  1990年   27篇
  1989年   28篇
  1988年   26篇
  1987年   21篇
  1986年   22篇
  1985年   30篇
  1984年   29篇
  1983年   24篇
  1982年   35篇
  1981年   29篇
  1980年   25篇
  1979年   16篇
  1977年   16篇
  1976年   12篇
  1975年   12篇
  1974年   11篇
  1973年   18篇
排序方式: 共有7941条查询结果,搜索用时 31 毫秒
41.
The smaller isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major islet autoantigen in autoimmune type 1 diabetes mellitus (T1DM). Transgenic plants expressing human GAD65 (hGAD65) are a potential means of direct oral administration of the islet autoantigen in order to induce tolerance and prevent clinical onset of disease. We have previously reported the successful generation of transgenic tobacco and carrot that express immunoreactive, full-length hGAD65. In the present study, we tested the hypothesis that the expression levels of recombinant hGAD65 in transgenic plants can be increased by targeting the enzyme to the plant cell cytosol and by mediating expression through the potato virus X (PVX) vector. By substituting the NH2-terminal region of hGAD65 with a homologous region of rat GAD67, a chimeric GAD671-87/GAD6588-585 molecule was expressed in transgenic tobacco plants. Immunolocalization analysis showed that immunoreactive GAD67/65 was found in the plant cell cytosol. By using a radio-immuno assay with human serum from a GAD65 autoantibody-positive T1DM patient, the highest expression level of the recombinant GAD67/65 protein was estimated to be 0.19% of the total soluble protein, compared to only 0.04% of wild-type hGAD65. Transient expression of wild-type, full-length hGAD65 in N. benthamiana mediated by PVX infection was associated with expression levels of immunoreactive protein as high as 2.2% of total soluble protein. This substantial improvement of the expression of hGAD65 in plants paves the way for immunoprevention studies of oral administration of GAD65-containing transgenic plant material in animal models of spontaneous autoimmune diabetes.  相似文献   
42.
A chimeric D1A dopaminergic receptor harboring the cytoplasmic tail (CT) of the D1B subtype (D1A-CTB) has been used previously to show that CT imparts high dopamine (DA) affinity and constitutive activity to the D1B receptors. However, the D1A-CTB chimera, unlike the D1B subtype, exhibits a significantly lower DA potency for stimulating adenylyl cyclase and a drastically lower maximal binding capacity (Bmax). Here, using a functional complementation of chimeric D1-like receptors, we have identified the human D1B receptor regions regulating the intramolecular relationships that lead to an increased DA potency and contribute to Bmax. We demonstrate that the addition of variant residues of the third extracellular loop (EL3) of the human D1B receptor into D1A-CTB chimera leads to a constitutively active mutant receptor displaying an increased DA affinity, potency, and Bmax. These results strongly suggest that constitutively active D1-like receptors can adopt multiple active conformations, notably one that confers increased DA affinity with decreased DA potency and Bmax and another that imparts increased DA affinity with a strikingly increased DA potency and Bmax. Overall, we show that a novel molecular interplay between EL3 and CT regulates multiple active conformations of D1-like receptors and may have potential implications for other G protein-coupled receptor classes.  相似文献   
43.
44.
45.
Current regimens for the management of human immunodeficiency virus type 1 (HIV-1) infection suppress plasma viremia to below detectable levels for prolonged intervals. Nevertheless, there is a rapid resumption in plasma viremia if therapy is interrupted. Attempts to characterize the extent of viral replication under conditions of potent suppression and undetectable plasma viremia have been hampered by a lack of convenient assays that can distinguish latent from ongoing viral replication. Using episomal viral cDNA as a surrogate for ongoing replication, we previously presented evidence that viral replication persists in the majority of infected individuals with a sustained aviremic status. The labile nature of viral episomes and hence their validity as surrogate markers of ongoing replication in individuals with long-term-suppressed HIV-1 infection have been analyzed in short-term in vitro experiments with conflicting results. Since these in vitro experiments do not shed light on the long-term in vivo dynamics of episomal cDNA or recapitulate the natural targets of infection in vivo, we have analyzed the dynamics of episomal cDNA turnover in vivo by following the emergence of an M184V polymorphism in plasma viral RNA, in episomal cDNA, and in proviral DNA in patients on suboptimal therapies. We demonstrate that during acquisition of drug resistance, wild-type episomal cDNAs are replaced by M184V-harboring episomes. Importantly, a complete replacement of wild-type episomes with M184V-containing episomes occurred while proviruses remained wild type. This indicates that episomal cDNAs are turned over by degradation rather than through death or tissue redistribution of the infected cell itself. Therefore, evolution of episomal viral cDNAs is a valid surrogate of ongoing viral replication in HIV-1-infected individuals.  相似文献   
46.
47.
Adult male Wistar rats were trained in the Morris water maze (MWM) on 3 consecutive days to find a visible platform. Concomitantly, microdialysis samples from the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei were collected in order to monitor local release of the neuropeptides vasopressin (AVP) and oxytocin (OXT), respectively, during controllable swim stress. Additionally, a separate set of animals was equipped with chronic jugular venous catheters to collect blood samples for analyzing plasma concentrations of corticotropin (ACTH) and corticosterone during training in the MWM. As measured by microdialysis, swimming in the MWM caused a significantly increased release of AVP within the PVN and of OXT within the SON on each of the 3 test sessions. In contrast to OXT in the SON, basal AVP concentrations in the PVN tended to rise from day to day. Plasma ACTH and corticosterone were found to be similarly elevated in response to MWM exposure on each of the test sessions. Taken together, these data demonstrate that testing in the MWM is not only associated with a significant activation of the hypothalamo-pituitary-adrenal axis but also with an intrahypothalamic release of AVP and OXT. If compared with findings using repeated forced swimming as an uncontrollable stressor (Wotjak, C.T., Ganster, J., Kohl, G., Holsboer, F., Landgraf, R., Engelmann, M., 1998. Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85, 1209-1222), the present results suggest that (1) similarities in the release profiles of AVP in the PVN and plasma hormone levels are fairly independent from the controllability of the stressor and seem, thus, to primarily relate to the physical demands of the task, whereas (2) the different intra-SON OXT release profiles might be linked to the controllability of the stressor.  相似文献   
48.
CCA-adding enzymes are polymerases existing in two distinct enzyme classes that both synthesize the C-C-A triplet at tRNA 3′-ends. Class II enzymes (found in bacteria and eukaryotes) carry a flexible loop in their catalytic core required for switching the specificity of the nucleotide binding pocket from CTP- to ATP-recognition. Despite this important function, the loop sequence varies strongly between individual class II CCA-adding enzymes. To investigate whether this loop operates as a discrete functional entity or whether it depends on the sequence context of the enzyme, we introduced reciprocal loop replacements in several enzymes. Surprisingly, many of these replacements are incompatible with enzymatic activity and inhibit ATP-incorporation. A phylogenetic analysis revealed the existence of conserved loop families. Loop replacements within families did not interfere with enzymatic activity, indicating that the loop function depends on a sequence context specific for individual enzyme families. Accordingly, modeling experiments suggest specific interactions of loop positions with important elements of the protein, forming a lever-like structure. Hence, although being part of the enzyme’s catalytic core, the loop region follows an extraordinary evolutionary path, independent of other highly conserved catalytic core elements, but depending on specific sequence features in the context of the individual enzymes.  相似文献   
49.
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities.  相似文献   
50.
Tumova K  Zhang D  Tiberi M 《FEBS letters》2004,576(3):461-467
We investigate whether the fourth intracellular loop (IL4) of D1 and D5 dopaminergic receptors (D1R, D5R) confers D1-like subtype-specific signaling properties. Using chimeric receptors (D1R-IL4B and D5R-IL4A), we show that swapping of IL4 leads to a switch in dopamine affinity and constitutive activity of D1R and D5R. Dopamine potency was reduced for both chimeras in comparison with wild-type receptors. Moreover, dopamine-mediated maximal activation was drastically increased in cells expressing D1R-IL4B when compared with those harboring D5R-IL4A or wild-type receptors. In conclusion, IL4 plays a pivotal role in imparting subtype-specific ligand binding and activation properties to highly homologous seven-transmembrane receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号