首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8374篇
  免费   571篇
  国内免费   7篇
  8952篇
  2023年   55篇
  2022年   128篇
  2021年   228篇
  2020年   120篇
  2019年   148篇
  2018年   239篇
  2017年   185篇
  2016年   298篇
  2015年   426篇
  2014年   433篇
  2013年   599篇
  2012年   722篇
  2011年   672篇
  2010年   431篇
  2009年   366篇
  2008年   487篇
  2007年   529篇
  2006年   452篇
  2005年   426篇
  2004年   337篇
  2003年   323篇
  2002年   302篇
  2001年   106篇
  2000年   86篇
  1999年   77篇
  1998年   63篇
  1997年   68篇
  1996年   35篇
  1995年   45篇
  1994年   40篇
  1993年   45篇
  1992年   40篇
  1991年   36篇
  1990年   31篇
  1989年   25篇
  1988年   32篇
  1987年   26篇
  1986年   17篇
  1985年   22篇
  1984年   30篇
  1983年   21篇
  1982年   17篇
  1981年   19篇
  1980年   16篇
  1979年   14篇
  1978年   14篇
  1977年   15篇
  1976年   13篇
  1975年   15篇
  1973年   11篇
排序方式: 共有8952条查询结果,搜索用时 31 毫秒
101.
Holz MK  Ballif BA  Gygi SP  Blenis J 《Cell》2005,123(4):569-580
In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.  相似文献   
102.
The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.  相似文献   
103.
Water channels AQP7 and AQP8 may be involved in transcellular water movement in the small intestine. We show that both AQP7 and AQP8 mRNA are expressed in rat small intestine. Immunoblot and immunohistochemistry experiments demonstrate that AQP7 and AQP8 proteins are present in the apical brush border membrane of intestinal epithelial cells. We investigated the effect of several metals and pH on the osmotic water permeability (Pf) of brush border membrane vesicles (BBMVs) and of AQP7 and AQP8 expressed in a cell line. Hg2+, Cu2+, and Zn2+ caused a significant decrease in the BBMV Pf, whereas Ni2+ and Li+ had no effect. AQP8-transfected cells showed a reduction in Pf in the presence of Hg2+ and Cu2+, whereas AQP7-transfected cells were insensitive to all tested metals. The Pf of both BBMVs and cells transfected with AQP7 and AQP8 was not affected by pH changes within the physiological range, and the Pf of BBMVs alone was not affected by phlorizin or amiloride. Our results indicate that AQP7 and AQP8 may play a role in water movement via the apical domain of small intestine epithelial cells. AQP8 may contribute to the water-imbalance-related clinical symptoms apparent after ingestion of high doses of Hg2+ and Cu2+.  相似文献   
104.
105.
106.
107.
Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-β structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids.  相似文献   
108.
Humans and animals often become coinfected with pathogen strains that differ in virulence. The ensuing interaction between these strains can, in theory, be a major determinant of the direction of selection on virulence genes in pathogen populations. Many mathematical analyses of this assume that virulent pathogen lineages have a competitive advantage within coinfected hosts and thus predict that pathogens will evolve to become more virulent where genetically diverse infections are common. Although the implications of these studies are relevant to both fundamental biology and medical science, direct empirical tests for relationships between virulence and competitive ability are lacking. Here we use newly developed strain-specific real-time quantitative polymerase chain reaction protocols to determine the pairwise competitiveness of genetically divergent Plasmodium chabaudi clones that represent a wide range of innate virulences in their rodent host. We found that even against their background of widely varying genotypic and antigenic properties, virulent clones had a competitive advantage in the acute phase of mixed infections. The more virulent a clone was relative to its competitor, the less it suffered from competition. This result confirms our earlier work with parasite lines derived from a single clonal lineage by serial passage and supports the virulence-competitive ability assumption of many theoretical models. To the extent that our rodent model captures the essence of the natural history of malaria parasites, public health interventions which reduce the incidence of mixed malaria infections should have beneficial consequences by reducing the selection for high virulence.  相似文献   
109.
The best way to appraise the size of abdominal organs remains undefined. Herein we compare the size of liver and spleen in hepatosplenic schistosomiasis using clinical and ultrasound (US) examination, and the size of the organs measured by US with their visualization below the costal margin ("palpable by US"). For this study, 411 individuals from an endemic area for schistosomiasis mansoni in Brazil have been selected. We found that palpable spleens and left liver lobes are larger than non palpable ones. Also, 23% of normal spleens measured by US were palpable on clinical examination, and 22% of spleens increased in size on US were non palpable. A total of 21% of normal spleens were "palpable by US". We also found 54% of normal sized right liver lobes palpable on clinical examination, whilst 54% of the increased livers, measured by US, were non palpable. About 76% of normal right liver lobes were "palpable by US". We conclude that the association of clinical, ultrasound and magnetic resonance imaging (MRI) examinations, in the near future, should give the investigators the necessary tools to perform a more accurate clinical diagnosis of hepatosplenic schistosomiasis mansoni.  相似文献   
110.
According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号