首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6241篇
  免费   448篇
  国内免费   6篇
  2023年   40篇
  2022年   101篇
  2021年   182篇
  2020年   103篇
  2019年   116篇
  2018年   183篇
  2017年   135篇
  2016年   227篇
  2015年   312篇
  2014年   325篇
  2013年   442篇
  2012年   525篇
  2011年   535篇
  2010年   313篇
  2009年   292篇
  2008年   373篇
  2007年   415篇
  2006年   353篇
  2005年   333篇
  2004年   272篇
  2003年   261篇
  2002年   246篇
  2001年   51篇
  2000年   30篇
  1999年   40篇
  1998年   47篇
  1997年   56篇
  1996年   30篇
  1995年   38篇
  1994年   33篇
  1993年   35篇
  1992年   22篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   17篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   24篇
  1983年   14篇
  1982年   11篇
  1981年   14篇
  1980年   14篇
  1979年   5篇
  1978年   6篇
  1977年   9篇
  1976年   6篇
  1975年   8篇
  1960年   4篇
排序方式: 共有6695条查询结果,搜索用时 15 毫秒
141.
In humans, activity rhythms become fragmented and attenuated in the elderly. This suggests an alteration of the circadian system per se that could in turn affect the expression of biological rhythms. In primates, very few studies have analyzed the effect of aging on the circadian system. The mouse lemur provides a unique model of aging in non‐human primates. To assess the effect of aging on the circadian system of this primate, we recorded the circadian and daily rhythms of locomotor activity of mouse lemurs of various ages. We also examined age‐related changes in the daily rhythm of immunoreactivities for vasoactive intestinal polypeptide (VIP) and arginine‐vasopressin (AVP) in suprachiasmatic nucleus neurons (SCN), two major peptides of the biological clock. Compared to adult animals, aged mouse lemurs showed a significant increase in daytime activity and an advanced activity onset. Moreover, when maintained in constant dim red light, aged animals exhibited a shortening of the free‐running period compared to adult animals. In adults, AVP immunoreactivity (ir) peaked during the second part of the day, and VIP ir peaked during the night. In aged mouse lemurs, the peaks of AVP ir and VIP ir were significantly shifted with no change in amplitude. AVP ir was most intense at the beginning of the night; whereas, VIP ir peaked at the beginning of the daytime. A weakened oscillator could account for the rhythmic disorders often observed in the elderly. Changes in the daily rhythms of AVP ir and VIP ir may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby modify the expression of some biological rhythms.  相似文献   
142.
143.
Caveolin‐1 (CAV1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we investigated the involvement of CAV1 in endothelial cell (EC) functions and show that siRNA‐induced CAV1 silencing in the human EC line EA.hy926 induces distinctive morphological changes, such as a marked increase in cell size and formation of stress fibers. Design‐based stereology was employed in this work to make unbiased quantification of morphometric properties such as volume, length, and surface of CAV1 silenced versus control cells. In addition, we showed that downregulation of CAV1 affects cell cycle progression at G1/S phase transition most likely by perturbation of AKT signaling. With the aim to assess the contribution of CAV1 to typical biological processes of EC, we report here that CAV1 targeting affects cell migration and matrix metalloproteinases (MMPs) activity, and reduces angiogenesis in response to VEGF, in vitro. Taken together our data suggest that the proper expression of CAV1 is important not only for maintaining the appropriate morphology and size of ECs but it might represent a prospective molecular target for studying key biological mechanisms such as senescence and tumorigenesis. J. Cell. Biochem. 114: 1843–1851, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
144.
145.
Various studies have been performed using the Social Rhythm Metric (SRM), though none has been developed with stroke patients. Stroke is a pathology that provokes a strong physical and social impact caused by an abnormality in cerebral circulation. Consequently, we performed two studies to validate the SRM and translate it into Portuguese, and to evaluate the regularity of the daily activities of stroke patients. Both healthy individuals and patients with unilateral cerebral lesions were evaluated. Subjects were of both sexes and between 45 and 65 yrs of age. Participants underwent clinical evaluation and recorded the time of 17 daily activities on the SRM for two weeks. Data were analyzed by the Pearson correlation and Fisher tests. After conceptual translation into Portuguese, corrections were made to arrive at the final version. Normative SRM scores varied from 3.2 to 7.0, suggesting that the activities presented in SRM adequately represented the daily routines of the patients. A correlation was found in SRM between the weeks (r=0.84; p=0.0001), indicating instrument reliability. The mean (±SD) score of the stoke patients was 4.8 (±1.0), and the correlation between the SRM and level of neurological damage showed that patients with lower SRM values were more physically compromised (r=?0.29; p=0.04), suggesting that SRM may be a clinical predictor. Activities related to eating and the sleep‐wake cycle were rated by most patients. In all, 71% of the patients did not work, while 84% of healthy individuals did (p=0.001). Only 64% of patients left home compared to 90% of the healthy subjects (p=0.001), and 59% of patients recorded the activity of going home compared to 82% of healthy individuals (p=0.001). According to the results, there is evidence of the validity and reliability of the SRM, enabling it to be reliably used in chronobiological studies of stroke patients. Given that a less regular lifestyle may be associated with neurological compromise and a decrease in social activities, we suggest new studies with the repeated application of this instrument over the clinical evolution of the disease to better define improvement or worsening of the patient's condition in terms of their social and health aspects.  相似文献   
146.
147.
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.  相似文献   
148.
149.
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.  相似文献   
150.
Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. J. Cell. Physiol. 228: 1658–1664, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号