首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   7篇
  242篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   14篇
  2013年   21篇
  2012年   21篇
  2011年   21篇
  2010年   21篇
  2009年   14篇
  2008年   10篇
  2007年   11篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1979年   1篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
  1964年   1篇
排序方式: 共有242条查询结果,搜索用时 0 毫秒
101.
102.
NADH oxidase (Nox) catalyzes the conversion of NADH to NAD(+). A previously uncharacterized Nox gene (LrNox) was cloned from Lactobacillus rhamnosus and overexpressed in Escherichia coli BL21(DE3). Sequence analysis revealed an open reading frame of 1359 bp, capable of encoding a polypeptide of 453 amino acid residues. The molecular mass of the purified LrNox enzyme was estimated to be ~50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 100 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had optimal activity at pH 5.6 and temperature 65 °C, and k(cat)/K(m) of 3.77×10(7) s(-1) M(-1), the highest ever reported. Heat inactivation studies revealed that LrNox had high thermostability, with a half-life of 120 min at 80 °C. Molecular dynamics simulation studies shed light on the factors contributing to the high activity of LrNox. Although the properties of Nox from several microorganisms have been reported, this is the first report on the characterization of a recombinant H(2)O-forming Nox with high activity and thermostability. The characteristics of the LrNox enzyme could prove to be of interest in industrial applications such as NAD(+) regeneration.  相似文献   
103.
The properties of amorphous solid proteins influence the texture and stability of low-moisture foods, the shelf-life of pharmaceuticals, and the viability of seeds and spores. We have investigated the relationship between molecular mobility and oxygen permeability in dry food protein films—bovine α-lactalbumin (α-La), bovine β-lactoblobulin (β-Lg), bovine serum albumin (BSA), soy 11S globulin, and porcine gelatin—using phosphorescence from the triplet probe erythrosin B. Measurements of the phosphorescence decay in the absence (nitrogen) and presence (air) of oxygen versus temperature provide estimates of the non-radiative decay rate for matrix-induced quenching (k TS0) and oxygen quenching (k Q[O2]) of the triplet state. Since the oxygen quenching constant is the product of the oxygen solubility ([O2]) and a term (k Q) proportional to the oxygen diffusion coefficient, it is a measure of the oxygen permeability through the films. For all proteins except gelatin, Arrhenius plots of k TS0 reveal a gradual increase of apparent activation energy across a broad temperature range starting at ∼50 °C; this suggests that there is a steady increase in the available modes of molecular motion with increasing temperature within the protein matrix. Arrhenius plots for k Q[O2] were linear for all proteins with activation energies ranging from 24 to 29 kJ/mol. The magnitude of the oxygen quenching constants varied in the different proteins; the rates were approximately 10-fold higher in α-La, β-Lg, and BSA than in 11S glycinin and gelatin. Although the rate of oxygen permeability was not directly affected by the increased mobility of the protein matrix, plots of k Q[O2] versus k TS0 were linear over nearly three orders of magnitude in the protein films, suggesting that the matrix mobility plays a specific role in modulating oxygen permeability. This effect may reflect differences in matrix-free volume that directly influence both mobility and oxygen solubility.  相似文献   
104.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   
105.
Glasshouse and field trials were conducted to determine the efficacy of a talc-based powder formulation of Pseudomonas fluorescens strain Pf1 in controlling groundnut leaf spot ( Cercosporidium personatum ) and rust ( Puccinia arachidis ). Seed treatment with the talc-based powder formulation of the bacterium alone effectively reduced the severity of leaf spot and rust. When the treated seeds were sown in soil, the antagonist moved to the rhizosphere and multiplied well in it. Foliar application with the powder formulation effectively controlled the groundnut leaf spot and rust. P. fluorescens multiplied well in the phyllosphere after foliar application of powder formulation. Combined application of the P. fluorescens formulation to seed and foliage effectively controlled leaf spot and rust, and increased the pod yield in greenhouse and field tests.  相似文献   
106.
Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.  相似文献   
107.
In order to investigate the modes of inheritance of serum immunoglobulin E (IgE) levels and atopic disease, serum IgE levels and data on allergic disease were obtained from 42 families ascertained through asthmatic children visiting an allergy clinic. Although the mean IgE levels were elevated (mean 637 U/ml), the prevalence of atopic disease in this population was surprisingly low. When the data were analyzed using complex segregation analysis, no major locus could be detected. Moreover, the polygenic heritability was unexpectedly small even though the correlation between serum IgE levels and the liability to atopic disease was around 0.4. Given this unusual set of findings, it is postulated that parasitic infections in this population have (in accordance with well-established results of parasitic disease) caused both elevated levels of serum IgE and a decreased prevalence of allergic disease with the possible masking of the various genetic components of serum IgE levels and atopic disease.  相似文献   
108.
Organophosphate compounds (OPC) have become the primary choice as insecticides and are widely used across the world. Additionally, OPCs were also commonly used as a chemical warfare agent that triggers a great challenge to public safety. Exposure of OPCs to human causes immediate excitation of cholinergic neurotransmission through transient elevation of synaptic acetylcholine (ACh) levels and accumulations. Likewise, prolonged exposure of OPCs can affect the processes in immune response, carbohydrate metabolism, cardiovascular toxicity, and several others. Studies revealed that the toxicity of OPCs was provoked by inhibition of acetylcholinesterase (AChE). Therefore, combined in silico approaches – pharmacophore-based 3D-QSAR model; docking and Molecular Dynamics (MD) – were used to assess the precise and comprehensive effects of series of known OP-derived compounds together with its ?log LD50 values. The selected five-featured pharmacophore model – AAHHR.61 – displayed the highest correlation (R2 = .9166), cross-validated coefficient (Q2 = .8221), F = 63.2, Pearson-R = .9615 with low RMSE = .2621 values obtained using five component PLS factors. Subsequently, the well-validated model was then used as a 3D query to search novel OPCs using a high-throughput virtual screening technique. Simultaneously, the docking studies predicted the binding pose of the most active OPC in the MdAChE binding pocket. Additionally, the stability of docking was verified using MD simulation. The results revealed that OP22 and predicted lead compounds bound tightly to S315 of MdAChE through potential hydrogen bond interaction over time. Overall, this study might provide valuable insight into binding mode of OPCs and hit compounds to inhibit AChE in housefly.  相似文献   
109.
The nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily and contain ligand gated ion channels (LGIC). These receptors are located mostly in the central nervous system (CNS) and peripheral nervous system (PNS). nAChRs reside at pre-synaptic regions to mediate acetylcholine neurotransmission and in the post synaptic membrane to propagate nerve impulses through neurons via acetylcholine. Malfunction of this neurotransmitter receptor is believed to cause various neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease and schizophrenia, and nAChRs are thus important drug targets. In the present work, starting from an earlier model of pentameric α7nAChR, a considerable effort has been taken to investigate interaction with ligands by performing docking studies with a diverse array of agonists and antagonists. Analysis of these docking complexes reveals identification of possible ligand-interacting residues. Some of these residues, e.g. Ser34, Gln55, Ser146, and Tyr166, which are evolutionarily conserved, were specifically subjected to virtual mutations based on their amino acid properties and found to be highly sensitive in the presence of antagonists by docking. Further, the study was extended using evolutionary trace analysis, revealing conserved and class-specific residues close to the putative ligand-binding site, further supporting the results of docking experiments.  相似文献   
110.
Individuals in distress emit audible vocalizations to either warn or inform conspecifics. The Indian short-nosed fruit bat, Cynopterus sphinx, emits distress calls soon after becoming entangled in mist nets, which appear to attract conspecifics. Phase I of these distress calls is longer and louder, and includes a secondary peak, compared to phase II. Activity-dependent expression of egr-1 was examined in free-ranging C. sphinx following the emissions and responses to a distress call. We found that the level of expression of egr-1 was higher in bats that emitted a distress call, in adults that responded, and in pups than in silent bats. Up-regulated cDNA was amplified to identify the target gene (TOE1) of the protein Egr-1. The observed expression pattern Toe1 was similar to that of egr-1. These findings suggest that the neuronal activity related to recognition of a distress call and an auditory feedback mechanism induces the expression of Egr-1. Co-expression of egr-1 with Toe1 may play a role in initial triggering of the genetic mechanism that could be involved in the consolidation or stabilization of distress call memories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号