首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1545篇
  免费   174篇
  国内免费   1篇
  1720篇
  2022年   9篇
  2021年   19篇
  2020年   11篇
  2019年   13篇
  2018年   13篇
  2017年   19篇
  2016年   19篇
  2015年   53篇
  2014年   59篇
  2013年   64篇
  2012年   83篇
  2011年   88篇
  2010年   74篇
  2009年   49篇
  2008年   78篇
  2007年   89篇
  2006年   95篇
  2005年   81篇
  2004年   92篇
  2003年   91篇
  2002年   81篇
  2001年   29篇
  2000年   12篇
  1999年   20篇
  1998年   21篇
  1997年   16篇
  1996年   19篇
  1995年   27篇
  1994年   31篇
  1993年   26篇
  1992年   28篇
  1991年   22篇
  1990年   21篇
  1989年   11篇
  1986年   7篇
  1985年   15篇
  1984年   8篇
  1983年   9篇
  1982年   13篇
  1981年   25篇
  1980年   22篇
  1978年   19篇
  1977年   10篇
  1976年   12篇
  1975年   9篇
  1974年   11篇
  1973年   21篇
  1972年   8篇
  1971年   8篇
  1968年   6篇
排序方式: 共有1720条查询结果,搜索用时 15 毫秒
51.
Though researchers have studied lowland gray langurs extensively, there is little information about the Himalayan populations. We provide foraging data from a field study of Himalayan langurs in Langtang National Park, Nepal at 3000–4000 m elevation. Phenological records show marked seasonality in resource abundance, with extremely low availability in winter, increasing abundance in spring and monsoon, and a reduction in fall. Activity budgets indicated greater time devoted to feeding as total vegetation abundance decreased. Diet included leaf buds, ripe fruit, and evergreen mature leaves in winter; deciduous young leaves in spring; and deciduous mature leaves in the monsoon and fall. Supplemental resources, such as underground storage organs, bark, and herbaceous vegetation, were also seasonally important. Among plant part classes included in the phenological sample, abundance and consumption correlate positively for all primary food resources except evergreen mature leaves and unripe fruit. Daily path lengths varied by season and, when controlled for overall vegetation abundance, positively relate to the consumption of soft underground storage organs, fruits, and deciduous mature leaves. The results contradict the common generalization of leaves as ubiquitous or nonpatchy resources.  相似文献   
52.
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.  相似文献   
53.
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.  相似文献   
54.
55.
56.
57.
In humans and mice, there are 11 genes derived from sushi-ichi related retrotransposons, some of which are known to play essential roles in placental development. Interestingly, this family of retrotransposons was thought to exist only in eutherian mammals, indicating their significant contributions to the eutherian evolution, but at least one, PEG10, is conserved between marsupials and eutherians. Here we report a novel sushi-ichi retrotransposon-derived gene, SIRH12, in the tammar wallaby, an Australian marsupial species of the kangaroo family. SIRH12 encodes a protein highly homologous to the sushi-ichi retrotransposon Gag protein in the tammar wallaby, while SIRH12 in the South American short-tailed grey opossum is a pseudogene degenerated by accumulation of multiple nonsense mutations. This suggests that SIRH12 retrotransposition occurred only in the marsupial lineage but acquired and retained some as yet unidentified novel function, at least in the lineage of the tammar wallaby.  相似文献   
58.

Background

To overcome the increasing resistance of pathogens to existing antibiotics the 10×''20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes.

Principal Finding

We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii.

Conclusions and Significance

Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.  相似文献   
59.
60.
Old Order Amish, founded by a small number of Swiss immigrants, exist in culturally isolated communities across rural North America. The consequences of genetic isolation and inbreeding within this group are evident by increased frequencies of many monogenic diseases and several complex disorders. Conversely, the prevalence of Alzheimer disease (AD), the most common form of dementia, is lower in the Amish than in the general American population. Since mitochondrial dysfunction has been proposed as an underlying cause of AD and a specific haplogroup was found to affect AD susceptibility in Caucasians, we investigated whether inherited mitochondrial haplogroups affect risk of developing AD dementia in Ohio and Indiana Amish communities. Ninety-five independent matrilines were observed across six large pedigrees and three small pedigrees then classified into seven major European haplogroups. Haplogroup T is the most frequent haplogroup represented overall in these maternal lines (35.4%) while observed in only 10.6% in outbred American and European populations. Furthermore, haplogroups J and K are less frequent (1.0%) than in the outbred data set (9.4–11.2%). Affected case matrilines and unaffected control lines were chosen from pedigrees to test whether specific haplogroups and their defining SNPs confer risk of AD. We did not observe frequency differences between AD cases compared to controls overall or when stratified by sex. Therefore, we suggest that the genetic effect responsible for AD dementia in the affected Amish pedigrees is unlikely to be of mitochondrial origin and may be caused by nuclear genetic factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号