首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   34篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1978年   3篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
81.
82.
Human lysosomal alpha-glucosidase. Characterization of the catalytic site.   总被引:5,自引:0,他引:5  
The substrate analogue conduritol B epoxide (CBE) is demonstrated to be an active site-directed inhibitor of human lysosomal alpha-glucosidase. A competitive mode of inhibition is obtained with glycogen as natural and 4-methylumbelliferyl-alpha-D-glucopyranoside as artificial substrate. The inactivation of the enzyme is time and concentration dependent and results in the covalent binding of CBE. Catalytic activity is required for binding to occur. CBE-labeled peptides containing the catalytic residue of lysosomal alpha-glucosidase were isolated and identified by microsequencing and amino acid analysis. The peptides appeared to originate from a protein domain which is highly conserved among alpha-amylases, maltase, glucoamylases, and transglucanosylases. Based on the sequence similarity and the mechanism of CBE binding, Asp-518 is predicted to be the essential carboxylate in the active site of lysosomal alpha-glucosidase. The functional importance of Asp-518 and other residues around the catalytic site was studied by expression of in vitro mutagenized alpha-glucosidase cDNA in transiently transfected COS cells. Substitution of Asp-513 by Glu-513 is shown to interfere with the posttranslational modification and the intracellular transport of the alpha-glucosidase precursor. The residues Trp-516 and Asp-518 are demonstrated to be critical for catalytic function.  相似文献   
83.
Previously isolated lysosomal alpha-glucosidase cDNA clones were ligated to full-length constructs for expression in vitro and in mammalian cells. One of these constructs (pSHAG1) did not code for functional enzyme, due to an arginine residue instead of a tryptophan residue at amino acid position 402. The mutation does not affect the rate of enzyme synthesis, but interferes with post-translational modification and intracellular transport of the acid alpha-glucosidase precursor. Using immunocytochemistry it is demonstrated that the mutant precursor traverses the endoplasmic reticulum and the Golgi complex, but does not reach the lysosomes. Pulse-chase experiments suggest premature degradation. The Trp-402-containing enzyme (encoded by construct pSHAG2) is processed properly, and has catalytic activity. A fraction of the enzyme is localized at the plasma membrane. It is hypothesized that membrane association of the acid alpha-glucosidase precursor, as demonstrated by Triton X-114 phase separation, is responsible for transport to this location. Transiently expressed acid alpha-glucosidase also enters the secretory pathway, since a catalytically active precursor is found in the culture medium. This precursor has the appropriate characteristics for use in enzyme replacement therapy. Efficient uptake via the mannose 6-phosphate receptor results in degradation of lysosomal glycogen in cultured fibroblasts and muscle cells from patients with glycogenosis type II.  相似文献   
84.
Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy) (1)H nuclear magnetic resonance spectroscopy, combined with two-dimensional (31)P-filtered (1)H-(1)H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (alpha2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (alpha1-6)-core-fucosylated or (alpha1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the site-specific location of the various glycans.  相似文献   
85.
Nucleotide excision repair (NER) is one of the most important repair systems which counteracts different forms of DNA damage either induced by various chemicals or irradiation. At the same time, less is known about the functions of NER in repair of DNA that is not exposed to exogenous DNA-damaging agents. We have investigated the role of NER in mutagenesis in Pseudomonas putida. The genome of this organism contains two uvrA genes, uvrA and uvrA2. Genetic studies on the effects of uvrA, uvrA2, uvrB and UvrC in mutagenic processes revealed that all of these genes are responsible for the repair of UV-induced DNA damage in P. putida. However, uvrA plays more important role in this process than uvrA2 since the deletion of uvrA2 gene had an effect on the UV-tolerance of bacteria only in the case when uvrA was also inactivated. Interestingly, the lack of functional uvrB, uvrC or uvrA2 gene reduced the frequency of stationary-phase mutations. The contribution of uvrA2, uvrB and uvrC to the mutagenesis appeared to be most significant in the case of 1-bp deletions whose emergence is dependent on error-prone DNA polymerase Pol IV. These data imply that NER has a dual role in mutagenesis in P. putida-besides functioning in repair of damaged DNA, NER is also important in generation of mutations. We hypothesize that NER enzymes may initiate gratuitous DNA repair and the following DNA repair synthesis might be mutagenic.  相似文献   
86.
A J Reuser  M Kroos 《FEBS letters》1982,146(2):361-364
The activity of acid alpha-glucosidase in cultured fibroblasts from adult patients with the lysosomal storage disease glycogenosis type II is only 10% of normal. A normal activity per molecule is found for the mature as well as for the precursor form of acid alpha-glucosidase in adult mutant fibroblasts. Excessive lysosomal breakdown of mature enzyme purified from mutant fibroblasts and taken up by acceptor cells does not occur. However, the NH4Cl-stimulated secretion of a precursor form of acid alpha-glucosidase by adult mutant fibroblasts is markedly reduced. The results are indicative of a defect during the production of acid alpha-glucosidase.  相似文献   
87.
Rat ventral prostate contains an acidic protein which can bind spermine selectively. The relative binding affinities of various aliphatic amines for the protein are, in decreasing order, spermine greater than thermine greater than greater than putrecine greater than 1,10-diaminodecane, cadaverine and 1,12-diaminododecane. The binding protein has an isoelectric point at pH 4.3 and a sedimentation coefficient of 3 S. Its molecular weight is approx. 30 000. Histones and nuclear chromatin preparations of the prostate can interact with the binding protein. The spermine-binding activity of the purified prostate protein can be inactivated by treatment with intestinal alkaline phosphatases. The phosphatase treated preparation can then be reactivated by beef heart protein kinase in the presence of cyclic AMP and ATP. The spermine-binding activity of the prostate cytosol protein fraction decreases after castration, but increases very rapidly after the castrated rats are injected with 5alpha-dihydrotestosterone. This finding raises the possibility that, in the postate, certain androgen actions may be dependent on the androgen-induced increase in the acidic protein binding of polyamines and their translocation to a functional cellular site such as nuclear chromatin. In the prostate cytosol, spermine also binds to 4-S tRNAs and to a unique RNA which has a sedimentation coefficient of 1.5 S.  相似文献   
88.
Transferrin (Tf) mRNA was recently demonstrated in rat and mouseplacental tissue. Rat placental cells were shown to secrete transferrin. Thecell type with which Tf mRNA was associated was not investigated. Wetherefore studied the ability of immunopurified human term cytotrophoblastcells in culture to synthesize Tf, by means of pulse-label experiments with35S-methionine and report that these cells do synthesize Tf. Tf mRNA wasdemonstrated in the cell lysates by means of RT-PCR. Tf isolated fromcytotrophoblast and syncytiotrophoblast cells was shown to be different fromboth maternal and fetal serum Tf with respect to the distribution ofisoforms as demonstrated by means of iso-electric focusing. The iso-electricpoints were found at lower pH values (pH 5.0-5.4), compared to theiso-electric points of maternal and fetal serum Tf, suggesting a higherdegree of sialylation and glycan chain complexity.  相似文献   
89.
90.
Bacterial genomes are functionally organized. This organization is dynamic and globally changing throughout the cell cycle. Upon initiation of replication of the chromosome, the two origins segregate and move towards their new location taking along the newly replicated genome. Caulobacter crescentus employs a dedicated active partitioning (Par) system to move one copy of the parS centromere to the distal pole, while the other stays at the stalked pole. In this issue of Molecular Microbiology, Hong and McAdams describe studies on the speed of segregation of parS and regions up to 150 kb away. They show clear differences in segregation rates between parS and 50 kb flanking regions versus regions further away. To assess segregation rates the authors track fluorescent markers during movement using time-lapse microscopy. The relation between genomic and physical distance of pairs of markers reflects how the genome is folded. This relation permits testing experimental data against models from polymer physics. Such models are helpful in understanding principles of genome folding. Although long used in studies on eukaryotes, this approach has rarely been applied to bacteria. Finally, the authors give the first direct evidence for a role of the bacterial chromatin protein HU in folding the genome in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号