首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2695篇
  免费   193篇
  国内免费   5篇
  2022年   17篇
  2021年   34篇
  2020年   22篇
  2019年   23篇
  2018年   31篇
  2017年   30篇
  2016年   39篇
  2015年   64篇
  2014年   83篇
  2013年   163篇
  2012年   139篇
  2011年   146篇
  2010年   106篇
  2009年   97篇
  2008年   124篇
  2007年   150篇
  2006年   138篇
  2005年   136篇
  2004年   157篇
  2003年   137篇
  2002年   130篇
  2001年   78篇
  2000年   83篇
  1999年   56篇
  1998年   35篇
  1997年   32篇
  1996年   33篇
  1995年   32篇
  1994年   32篇
  1993年   16篇
  1992年   38篇
  1991年   42篇
  1990年   50篇
  1989年   25篇
  1988年   46篇
  1987年   38篇
  1986年   34篇
  1985年   27篇
  1984年   30篇
  1983年   23篇
  1982年   31篇
  1981年   20篇
  1980年   14篇
  1979年   15篇
  1978年   17篇
  1977年   11篇
  1974年   8篇
  1973年   11篇
  1972年   8篇
  1969年   8篇
排序方式: 共有2893条查询结果,搜索用时 15 毫秒
131.
Induced pluripotent stem cell (iPSC) technology offers a novel approach for conversion of human primary fibroblasts into melanocytes. During attempts to explore various protocols for differentiation of iPSCs into melanocytes, we found a distinct and self‐renewing cell lineage that could differentiate into melanocytes, named as melanocyte precursor cells (MPCs). The MPCs exhibited a morphology distinctive from that of melanocytes, in lacking either the melanosomal structure or the melanocyte‐specific marker genes MITF, TYR, and SOX10. In addition, gene expression studies in the MPCs showed high‐level expression of WNT5A, ROR2, which are non‐canonical WNT pathway markers, and its related receptor TGFβR2. In contrast, MPC differentiation into melanocytes was achieved by activating the canonical WNT pathway using the GSK3β inhibitor. Our data demonstrated the distinct characteristic of MPCs' ability to differentiate into melanocytes, and the underlying mechanism of interfacing between canonical WNT signaling pathway and non‐canonical WNT signaling pathway.  相似文献   
132.
133.
134.
Hamamura K  Yokota H 《FEBS letters》2007,581(9):1769-1774
ATF4 is an essential regulator in osteogenesis as well as in stress responses to the endoplasmic reticulum (ER). We addressed a question: Does ER stress to osteoblasts upregulate ATF4 expression? If so, do they exhibit ATF4-mediated bone remodeling or apoptosis? ER stress, induced by Thapsigargin and tunicamycin, elevated a phosphorylated form of eIF2alpha and ATF4, but the cellular fate depended on treatment duration. The treatment for 1h, for instance, activated Runx2, and type I collagen, while the treatment for 24h induced apoptosis. Our observations suggest that there is a threshold for ER stress and osteoblasts present a bi-phasic pattern of their fate.  相似文献   
135.
Inoue S  Yokota M  Nakada K  Miyoshi H  Hayashi J 《FEBS letters》2007,581(9):1910-1916
Anemia is a symptom in patients with Pearson syndrome caused by the accumulation of mutated mitochondrial DNA (mtDNA). Such mutated mtDNAs have been detected in patients with anemia. This suggested that respiration defects due to mutated mtDNA are responsible for the anemia. However, there has been no convincing experimental evidence to confirm the pathophysiological relation between respiration defects in hematopoietic cells and expression of anemia. We address this issue by transplanting bone marrow cells carrying pathogenic mtDNA with a large-scale deletion (ΔmtDNA) into normal mice. The bone marrow-transplanted mice carried high proportion of ΔmtDNA only in hematopoietic cells, and resultant the mice suffered from macrocytic anemia. They show abnormalities of erythroid differentiation and weak erythropoietic response to a stressful condition. These observations suggest that hematopoietic cell-specific respiration defects caused by mtDNAs with pathogenic mutations are responsible for anemia by inducing abnormalities in erythropoiesis.  相似文献   
136.
137.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid membrane of chloroplasts play a central role in scavenging reactive oxygen species generated by photosystems. These enzymes are inactivated within minutes by H2O2 when the reducing substrate, ascorbate, is depleted. We found that, when the enzyme is inactivated by H2O2, a heme at the catalytic site of a stromal APX isoform is irreversibly cross-linked to a tryptophan residue facing the distal cavity. Mutation of this tryptophan to phenylalanine abolished the cross-linking and increased the half-time for inactivation from <10 to 62 s. In contrast with H2O2-tolerant peroxidases, rapid formation of the cross-link in APXs suggests that a radical in the reaction intermediate tends to be located in the distal tryptophan so that heme is easily cross-linked to it. This is the first report of a mutation that improves the tolerance of chloroplast APXs to H2O2.  相似文献   
138.
Upon starvation, Dictyostelium discoideum cells halt cell proliferation, aggregate into multicellular organisms, form migrating slugs, and undergo morphogenesis into fruiting bodies while differentiating into dormant spores and dead stalk cells. At almost any developmental stage cells can be forced to dedifferentiate when they are dispersed and diluted into nutrient broth. However, migrating slugs can traverse lawns of bacteria for days without dedifferentiating, ignoring abundant nutrients and continuing development. We now show that developing Dictyostelium cells revert to the growth phase only when bacteria are supplied during the first 4 to 6 h of development but that after this time, cells continue to develop regardless of the presence of food. We postulate that the cells' inability to revert to the growth phase after 6 h represents a commitment to development. We show that the onset of commitment correlates with the cells' loss of phagocytic function. By examining mutant strains, we also show that commitment requires extracellular cyclic AMP (cAMP) signaling. Moreover, cAMP pulses are sufficient to induce both commitment and the loss of phagocytosis in starving cells, whereas starvation alone is insufficient. Finally, we show that the inhibition of development by food prior to commitment is independent of contact between the cells and the bacteria and that small soluble molecules, probably amino acids, inhibit development during the first few hours and subsequently the cells become unable to react to the molecules and commit to development. We propose that commitment serves as a checkpoint that ensures the completion of cooperative aggregation of developing Dictyostelium cells once it has begun, dampening the response to nutritional cues that might inappropriately block development.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号