首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1195篇
  免费   61篇
  国内免费   3篇
  1259篇
  2022年   14篇
  2021年   28篇
  2020年   13篇
  2019年   13篇
  2018年   22篇
  2017年   22篇
  2016年   23篇
  2015年   48篇
  2014年   51篇
  2013年   85篇
  2012年   85篇
  2011年   97篇
  2010年   56篇
  2009年   55篇
  2008年   61篇
  2007年   73篇
  2006年   71篇
  2005年   66篇
  2004年   80篇
  2003年   70篇
  2002年   61篇
  2001年   13篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   10篇
  1996年   11篇
  1995年   7篇
  1994年   13篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   5篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1259条查询结果,搜索用时 15 毫秒
11.
This study was undertaken to investigate whether the concentration of carbonic anhydorase isoenzyme I (CA-I) in canine feces and urine is useful as a temporary marker of occult blood. Concentrations of CA-I were measured by enzyme-linked immunosorbent assay (ELISA). Fecal CA-I concentrations in 113 healthy beagle dogs (50 male and 63 female) of various ages ranged from 4.3 to 16.7 ng/g feces (mean; 7.0 +/- 2.9 ng/g feces). One milliliter of blood from 3 healthy beagle dogs was found to contain 1,047, 1,062 and 1,150 microg CA-I. The fecal CA-I concentrations of dogs receiving intragastric infusions of autologous blood (10 ml) were very low. However, the fecal CA-I concentrations of dogs receiving infusion of autologous blood (5 ml) into the ascending colon were very high. Detection of fecal CA-I would be useful for identifying dogs with hemorrhaging of the large intestine. Of 55 urinary samples collected from healthy beagle dogs by catheter, chemical tests for occult blood were negative in 44, but CA-I concentrations ranged from 1.8 to 12.6 ng/ml (mean; 6.9 +/- 5.4 ng/ml) by ELISA. The CA-I concentrations of the other 11 samples, which tested positive for occult blood on chemical testing, ranged from 41.2 to 525.0 ng/ml by ELISA. Although CA-I is not a specific marker of erythrocytes, CA-I may be used to detect occult blood in canine feces and urine until a specific immunological test kit using antibody for Hb is developed.  相似文献   
12.
13.
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.  相似文献   
14.
Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Delta cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins.  相似文献   
15.
16.
Abstract: Three isoforms of catalytic α subunits and two isoforms of β subunits of Na+,K+-ATPase were detected in rat sciatic nerves by western blotting. Unlike the enzyme in brain, sciatic nerve Na+,K+-ATPase was highly resistant to ouabain. The ouabain-resistant α1 isoform was demonstrated to be the predominant form in rat intact sciatic nerve by quantitative densitometric analysis and is mainly responsible for sciatic nerve Na+,K+-ATPase activity. After sciatic nerve injury, the α3 and β1 isoforms completely disappeared from the distal segment owing to Wallerian degeneration. In contrast, α2 and β2 isoform expression and Na+,K+-ATPase activity sensitive to pyrithiamine (a specific inhibitor of the α2 isoform) were markedly increased in Schwann cells in the distal segment of the injured sciatic nerve. These latter levels returned to baseline with nerve regeneration. Our results suggest that α3 and β1 isoforms are exclusive for the axon and α2 and β2 isoforms are exclusive for the Schwann cell, although axonal contact regulates α2 and β2 isoform expressions. Because the β2 isoform of Na+,K+-ATPase is known as an adhesion molecule on glia (AMOG), increased expression of AMOG/β2 on Schwann cells in the segment distal to sciatic nerve injury suggests that AMOG/β2 may act as an adhesion molecule in peripheral nerve regeneration.  相似文献   
17.
18.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting ∼60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5–9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1–3, interacts with Man8GlcNAc2 and Man9GlcNAc2 oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.  相似文献   
19.
20.
To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号