首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1766篇
  免费   106篇
  国内免费   3篇
  2022年   17篇
  2021年   30篇
  2020年   15篇
  2019年   15篇
  2018年   31篇
  2017年   26篇
  2016年   30篇
  2015年   56篇
  2014年   65篇
  2013年   103篇
  2012年   105篇
  2011年   118篇
  2010年   69篇
  2009年   75篇
  2008年   82篇
  2007年   92篇
  2006年   88篇
  2005年   74篇
  2004年   93篇
  2003年   88篇
  2002年   77篇
  2001年   36篇
  2000年   31篇
  1999年   26篇
  1998年   22篇
  1997年   18篇
  1996年   20篇
  1995年   15篇
  1994年   22篇
  1993年   18篇
  1992年   24篇
  1991年   15篇
  1990年   20篇
  1989年   10篇
  1988年   19篇
  1987年   15篇
  1986年   18篇
  1985年   17篇
  1984年   16篇
  1983年   7篇
  1982年   17篇
  1981年   12篇
  1980年   9篇
  1979年   16篇
  1977年   9篇
  1975年   11篇
  1973年   8篇
  1971年   9篇
  1970年   8篇
  1966年   6篇
排序方式: 共有1875条查询结果,搜索用时 15 毫秒
101.
It is thought that changes in gene expression in the brain mediate chronic ethanol-induced complex behaviors such as tolerance, dependence, and sensitization, and also relate to ethanol-induced brain toxicity. Using high-density filter-based cDNA microarrays (GeneFilters), we analyzed the expression of over 5000 genes in the dorsal hippocampus of rats treated with 12% ethanol or tap water for 15 months. Ethanol-induced changes in gene expression were particularly prominent in two groups of genes. One group consisted of oxidoreductases, including ceruloplasmin, uricase, branched-chain alpha-keto acid dehydrogenase, NADH ubiquinone oxidoreductase, P450, NAD+-isocitrate dehydrogenase, and cytochrome c oxidase, which may be related to ethanol-induced oxidative stress. The other group of genes included ADP-ribosylation factor, RAS related protein rab10, phosphatidylinositol 4-kinase, dynein-associated polypeptides, and dynamin-1, which seem to be involved in membrane trafficking. The results may reveal some of the pathways involved in ethanol-induced pathophysiological changes.  相似文献   
102.
The oxidation mechanism of caffeic acid (CAF) has been studied by means of cyclic voltammetry with the plastic formed carbon or glassy carbon electrode. CAF gives a well-developed two-electron reversible wave in acidic media, whereas it shows an irreversible behavior, i.e., a decrease of the rereduction peak, in less acidic media, suggesting that the oxidation of CAF follows an irreversible chemical reaction(s). Digital simulation analyses based on different oxidation mechanisms have been performed for the voltammograms obtained with the GC electrode in 1:1 (v/v) water:ethanol solutions. The results clearly show that the seeming two-electron oxidation of CAF occurs stepwise via one-electron processes, each of which follows an irreversible chemical reaction. It has also been suggested that the semiquinone radical as an intermediate of the one-electron oxidation should play an important role in the oxidation reaction. Evaluations of the rate constants for the chemical reactions have further suggested that the chemical reactions are dimerization reactions.  相似文献   
103.
Viral hepatitis affects more than 2 billion people worldwide. In particular, no effective treatment exists to abrogate death and liver damage in fulminant hepatitis. Activation of T cells is an initial and critical event in the pathogenesis of liver damage in autoimmune and viral hepatitis. The precise molecular mechanisms that induce T cell-mediated hepatocyte injury remain largely unclear. In mice, T cell-dependent hepatitis and acute liver damage can be modeled using ConA. In this study, we examined the role of the adhesion receptor LFA-1 in ConA-induced acute hepatic damage using LFA-1(-/-) (CD11a) mice. Massive liver cell apoptosis and metabolic liver damage were observed in LFA-1(+/+) mice following ConA injection. By contrast, LFA-1(-/-) mice were completely resistant to ConA-induced hepatitis and none of the LFA-1(-/-) mice showed any hepatic damage. Whereas activated hepatic T cells remained in the liver in LFA-1(+/+) mice, activated T cells were rapidly cleared from the livers of LFA-1(-/-) mice. Mechanistically, T cells from LFA-1(-/-) mice showed markedly reduced cytotoxicity toward liver cells as a result of impaired, activation-dependent adhesion. Importantly, adoptive transfer of hepatic T cells from LFA-1(+/+) mice, but not from LFA-1(-/-) mice, sensitized LFA-1(-/-) mice to ConA-induced hepatitis. Thus, LFA-1 expression on T cells is necessary and sufficient for T cell-mediated liver damage in vivo. These results provide the first genetic evidence on an adhesion receptor, LFA-1, that has a crucial role in fulminant hepatitis. These genetic data identify LFA-1 as a potential key target for the treatment of T cell-mediated hepatitis and the prevention of liver damage.  相似文献   
104.
Tumor-directed therapeutic approaches require unique or overexpressed specific Ag or receptor as a target to achieve selective tumor killing. However, heterogeneous expression of these targets on tumor cells limits the efficacy of this form of therapy. In this study, we forced abundant expression of IL-13Ralpha2 chain by plasmid-mediated gene transfer in head and neck, as well as prostate tumors to provide a potential target. This was followed by successfully treating xenograft tumor-bearing nude mice with IL-13R-directed cytotoxin (IL13-PE38QQR). Although we did not observe an indirect cytotoxic bystander effect conveyed to nontransduced tumor cells in vitro, our approach in vivo led to a complete regression of established tumors transfected with IL-13Ralpha2 chain in most animals. We found that the tumor eradication was achieved in part by infiltration of macrophages and NK cells, assessed by immunohistochemistry. Moreover, head and neck tumors xenografted in macrophage-depleted nude mice were less sensitive to the antitumor effect of IL-13 cytotoxin. Because we did not observe vector-related toxicity in any vital organs, our novel combination strategy of gene transfer of IL-13Ralpha2 chain and receptor-directed cytotoxin therapy may be a useful approach for the treatment of localized cancer.  相似文献   
105.
The present study was undertaken to characterize the in vivo 1,4-dihydropyridine (DHP) receptor binding of long-acting 1,4-DHP calcium channel antagonists in the mesenteric artery and other tissues of SHR. In vivo specific binding of (+)-[3H]PN 200-110 in the SHR mesenteric artery was significantly (36.6-49.7 %) reduced 1-8 h after oral administration of benidipine (1.84 micromol/kg). A greater reduction in (+)-[3H]PN 200-110 binding in the mesenteric artery was observed at a higher dose (5.53 micromol/kg) of this drug. This dose of benidipine also reduced significantly the in vivo specific (+)-[3H]PN 200-110 binding in the aorta but not in the myocardium and cerebral cortex. Following oral administration of amlodipine (17.6 micromol/kg), a significant (51.7-94.2 %) reduction in (+)-[3H]PN 200-110 binding was seen at 1-18 h in the mesenteric artery and at 1-12 h in the aorta. Only a slight reduction in myocardial and cerebral cortical (+)-[3H]PN 200-110 binding was seen following amlodipine administration. In contrast, oral administration of nifedipine (28.9 micromol/kg) reduced markedly in vivo (+)-[3H]PN 200-110 binding in all the tissues of SHR at 1-6 h, and the degree and time-course of the reduction did not differ significantly among the tissues. The area under the curve (AUC) for the receptor occupancy vs time was calculated from the reduction rate (%) of in vivo specific (+)-[3H]PN 200-110 binding. The ratios of the AUCmesenteric artery to AUCaorta or AUCmesenteric artery to AUCmyocardium after oral administration of benidipine and amlodipine were greater than the corresponding value for nifedipine. The degree and time-course of arterial receptor occupancy by benidipine and amlodipine agreed well with those of their hypotensive effects in the conscious SHR. In conclusion, the present study demonstrates that benidipine and amlodipine may occupy, in a more selective and sustained manner, 1,4-DHP receptors in arterial tissues than in other tissues of SHR, and thus, such receptor binding specificity may be responsible for the long-lasting hypotensive effects of these drugs.  相似文献   
106.
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.  相似文献   
107.
To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.  相似文献   
108.
To discover the details of the effects of magnesium (Mg) deficiency on kidney function, the course of changes in N-acetyl-beta-D-glucosaminidase (NAG) activity in the urine and in urinary albumin excretion were examined in rats fed a Mg-deficient diet. NAG activity in the urine and urinary albumin excretion in rats fed the Mg-deficient diet significantly increased from 7 d until the end of the feeding period. We suggest that Mg-deficient diet rapidly induces kidney function insufficiency.  相似文献   
109.
110.
We present the X-ray structure of the RuvA-RuvB complex, which plays a crucial role in ATP-dependent branch migration. Two RuvA tetramers form the symmetric and closed octameric shell, where four RuvA domain IIIs spring out in the two opposite directions to be individually caught by a single RuvB. The binding of domain III deforms the protruding beta hairpin in the N-terminal domain of RuvB and thereby appears to induce a functional and less symmetric RuvB hexameric ring. The model of the RuvA-RuvB junction DNA ternary complex, constructed by fitting the X-ray structure into the averaged electron microscopic images of the RuvA-RuvB junction, appears to be more compatible with the branch migration mode of a fixed RuvA-RuvB interaction than with a rotational interaction mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号