首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   26篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   12篇
  2017年   7篇
  2016年   12篇
  2015年   21篇
  2014年   22篇
  2013年   16篇
  2012年   26篇
  2011年   31篇
  2010年   21篇
  2009年   16篇
  2008年   23篇
  2007年   31篇
  2006年   23篇
  2005年   16篇
  2004年   27篇
  2003年   19篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1973年   4篇
  1966年   1篇
排序方式: 共有404条查询结果,搜索用时 15 毫秒
301.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative multifactorial disease characterized, like other diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) or frontotemporal dementia (FTD), by the degeneration of specific neuronal cell populations. Motor neuron loss is distinctive of ALS. However, the causes of onset and progression of motor neuron death are still largely unknown. In about 2% of all cases, mutations in the gene encoding for the Cu/Zn superoxide dismutase (SOD1) are implicated in the disease. Several alterations in the expression or activation of cell cycle proteins have been described in the neurodegenerative diseases and related to cell death. In this work we show that mutant SOD1 can alter cell cycle in a cellular model of ALS. Our findings suggest that modifications in the cell cycle progression could be due to an increased interaction between mutant G93A SOD1 and Bcl-2 through the cyclins regulator p27. As previously described in post mitotic neurons, cell cycle alterations could fatally lead to cell death.  相似文献   
302.
303.
BackgroundThe relative role of socioeconomic status (SES), home environment and maternal intelligence, as factors affecting child cognitive development in early childhood is still unclear. The aim of this study is to analyze the association of SES, home environment and maternal IQ with child neurodevelopment at 18 months.MethodsThe data were collected prospectively in the PHIME study, a newborn cohort study carried out in Italy between 2007 and 2010. Maternal nonverbal abilities (IQ) were evaluated using the Standard Progressive Matrices, a version of the Raven’s Progressive Matrices; a direct evaluation of the home environment was carried out with the AIRE instrument, designed using the HOME (Home Observation for Measurement of the Environment) model; the socioeconomic characteristics were evaluated using the SES index which takes into account parents occupation, type of employment, educational level, homeownership. The study outcome was child neurodevelopment evaluated at 18 months, with the Bayley Scales of Infant and Toddler Development Third Edition (BSID III). Linear regression analyses and mediation analyses were carried out to evaluate the association between the three exposures, and the scaled scores of the three main scales of BSID III (cognitive, language and motor scale), with adjustment for a wide range of potential explanatory variables.ResultsData from 502 mother-child pairs were analyzed. Mediation analysis showed a relationship between SES and maternal IQ, with a complete mediation effect of home environment in affecting cognitive and language domains. A direct significant effect of maternal IQ on the BSID III motor development scale and the mediation effect of home environment were found.ConclusionsOur results show that home environment was the variable with greater influence on neurodevelopment at 18 months. The observation of how parents and children interact in the home context is crucial to adequately evaluate early child development.  相似文献   
304.
A culture line of Plasmodium falciparum (FCR-3/Gambia) was exposed in vitro for a 2-day period to several analogs of adenosylhomocysteine. Minimal concentrations giving complete inhibition of growth were 0.2 mM for 3-deazaadenosine, 0.2 mM for 5′-deoxy-5′-(isobutylthio)-3-deazaadenosine, and 0.3 μM for sinefungin. The effects of the first two of these compounds were potentiated by homocysteine-thiolactone, suggesting that they were inhibiting methylation reaction(s) indirectly via adenosylhomocysteine hydrolase (EC 3.3.1.1).  相似文献   
305.
Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.  相似文献   
306.
307.

Background

Lupus erythematosus (LE) is a heterogeneous disease ranging from mainly skin-restricted manifestations (discoid LE [DLE] and subacute cutaneous LE) to a progressive multisystem disease (systemic LE [SLE]). Genetic association studies have recently identified several strong susceptibility genes for SLE, including integrin alpha M (ITGAM), also known as CD11b, whereas the genetic background of DLE is less clear.

Principal Findings

To specifically investigate whether ITGAM is a susceptibility gene not only for SLE, but also for cutaneous DLE, we genotyped 177 patients with DLE, 85 patients with sporadic SLE, 190 index cases from SLE families and 395 population control individuals from Finland for nine genetic markers at the ITGAM locus. SLE patients were further subdivided by the presence or absence of discoid rash and renal involvement. In addition, 235 Finnish and Swedish patients positive for Ro/SSA-autoantibodies were included in a subphenotype analysis. Analysis of the ITGAM coding variant rs1143679 showed highly significant association to DLE in patients without signs of systemic disease (P-value  = 4.73×10−11, OR  = 3.20, 95% CI  = 2.23–4.57). Significant association was also detected to SLE patients (P-value  = 8.29×10−6, OR  = 2.14, 95% CI  = 1.52–3.00), and even stronger association was found when stratifying SLE patients by presence of discoid rash (P-value  = 3.59×10−8, OR  = 3.76, 95% CI  = 2.29–6.18).

Significance

We propose ITGAM as a novel susceptibility gene for cutaneous DLE. The risk effect is independent of systemic involvement and has an even stronger genetic influence on the risk of DLE than of SLE.  相似文献   
308.
The light‐dependent regulation of stromal enzymes by thioredoxin (Trx)‐catalysed disulphide/dithiol exchange is known as a classical mechanism for control of chloroplast metabolism. Recent proteome studies show that Trx targets are present not only in the stroma but in all chloroplast compartments, from the envelope to the thylakoid lumen. Trx‐mediated redox control appears to be a common feature of important pathways, such as the Calvin cycle, starch synthesis and tetrapyrrole biosynthesis. However, the extent of thiol‐dependent redox regulation in the thylakoid lumen has not been previously systematically explored. In this study, we addressed Trx‐linked redox control in the chloroplast lumen of Arabidopsis thaliana. Using complementary proteomics approaches, we identified 19 Trx target proteins, thus covering more than 40% of the currently known lumenal chloroplast proteome. We show that the redox state of thiols is decisive for degradation of the extrinsic PsbO1 and PsbO2 subunits of photosystem II. Moreover, disulphide reduction inhibits activity of the xanthophyll cycle enzyme violaxanthin de‐epoxidase, which participates in thermal dissipation of excess absorbed light. Our results indicate that redox‐controlled reactions in the chloroplast lumen play essential roles in the function of photosystem II and the regulation of adaptation to light intensity.  相似文献   
309.
SUMMARY The single large rodent incisor in each jaw quadrant is evolutionarily derived from a mammalian ancestor with many small incisors. The embryonic placode giving rise to the mouse incisor is considerably larger than the molar placode, and the question remains whether this large incisor placode is a developmental requisite to make a thick incisor. Here we used in vitro culture system to experiment with the molecular mechanism regulating tooth placode development and how mice have thick incisors. We found that large placodes are prone to disintegration and formation of two to three small incisor placodes. The balance between one large or multiple small placodes was altered through the regulation of bone morphogenetic protein (BMP) and Activin signaling. Exogenous Noggin, which inhibits BMP signaling, or exogenous Activin cause the development of two to three incisors. These incisors were more slender than normal incisors. Additionally, two inhibitor molecules, Sostdc1 and Follistatin, which regulate the effects of BMPs and Activin and have opposite expression patterns, are likely to be involved in the incisor placode regulation in vivo. Furthermore, inhibition of BMPs by recombinant Noggin has been previously suggested to cause a change in the tooth identity from the incisor to the molar. This evidence has been used to support a homeobox code in determining tooth identity. Our work provides an alternative interpretation, where the inhibition of BMP signaling can lead to splitting of the large incisor placode and the formation of partly separate incisors, thereby acquiring molar‐like morphology without a change in tooth identity.  相似文献   
310.
Recent genome-wide association (GWA) studies have identified dozens of common variants associated with adult height. However, it is unknown how these variants influence height growth during childhood. We derived peak height velocity in infancy (PHV1) and puberty (PHV2) and timing of pubertal height growth spurt from parametric growth curves fitted to longitudinal height growth data to test their association with known height variants. The study consisted of N=3,538 singletons from the prospective Northern Finland Birth Cohort 1966 with genotype data and frequent height measurements (on average 20 measurements per person) from 0–20 years. Twenty-six of the 48 variants tested associated with adult height (p<0.05, adjusted for sex and principal components) in this sample, all in the same direction as in previous GWA scans. Seven SNPs in or near the genes HHIP, DLEU7, UQCC, SF3B4/SV2A, LCORL, and HIST1H1D associated with PHV1 and five SNPs in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, and DOT1L with PHV2 (p<0.05). We formally tested variants for interaction with age (infancy versus puberty) and found biologically meaningful evidence for an age-dependent effect for the SNP in SOCS2 (p=0.0030) and for the SNP in HHIP (p=0.045). We did not have similar prior evidence for the association between height variants and timing of pubertal height growth spurt as we had for PHVs, and none of the associations were statistically significant after correction for multiple testing. The fact that in this sample, less than half of the variants associated with adult height had a measurable effect on PHV1 or PHV2 is likely to reflect limited power to detect these associations in this dataset. Our study is the first genetic association analysis on longitudinal height growth in a prospective cohort from birth to adulthood and gives grounding for future research on the genetic regulation of human height during different periods of growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号