首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   47篇
  545篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2018年   11篇
  2017年   5篇
  2016年   15篇
  2015年   15篇
  2014年   18篇
  2013年   29篇
  2012年   50篇
  2011年   39篇
  2010年   16篇
  2009年   26篇
  2008年   30篇
  2007年   28篇
  2006年   22篇
  2005年   22篇
  2004年   26篇
  2003年   12篇
  2002年   24篇
  2001年   5篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1989年   6篇
  1988年   12篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1974年   4篇
  1973年   3篇
  1969年   2篇
  1967年   2篇
  1955年   1篇
  1878年   1篇
排序方式: 共有545条查询结果,搜索用时 15 毫秒
11.
To understand how the Rhizobium leguminosarum raiI-raiR quorum-sensing system is regulated, we identified mutants with decreased levels of RaiI-made N-acyl homoserine lactones (AHLs). A LuxR-type regulator, ExpR, is required for raiR expression, and RaiR is required to induce raiI. Since raiR (and raiI) expression is also reduced in cinI and cinR quorum-sensing mutants, we thought CinI-made AHLs may activate ExpR to induce raiR. However, added CinI-made AHLs did not induce raiR expression in a cinI mutant. The reduced raiR expression in cinI and cinR mutants was due to lack of expression of cinS immediately downstream of cinI. cinS encodes a 67-residue protein, translationally coupled to CinI, and cinS acts downstream of expR for raiR induction. Cloned cinS in R. leguminosarum caused an unusual collapse of colony structure, and this was delayed by mutation of expR. The phenotype looked like a loss of exopolysaccharide (EPS) integrity; mutations in cinI, cinR, cinS, and expR all reduced expression of plyB, encoding an EPS glycanase, and mutation of plyB abolished the effect of cloned cinS on colony morphology. We conclude that CinS and ExpR act to increase PlyB levels, thereby influencing the bacterial surface. CinS is conserved in other rhizobia, including Rhizobium etli; the previously observed effect of cinI and cinR mutations decreasing swarming in that strain is primarily due to a lack of CinS rather than a lack of CinI-made AHL. We conclude that CinS mediates quorum-sensing regulation because it is coregulated with an AHL synthase and demonstrate that its regulatory effects can occur in the absence of AHLs.Production of N-acyl homoserine lactones (AHLs) is common to many plant-associated bacteria (7), in which it is usually associated with population density-dependent regulation of genes affecting adaptive responses (49). Within the family Rhizobiaceae, population density-regulated gene expression (quorum sensing) mediated via AHLs has been identified in several agrobacteria and rhizobia (13, 51). In Agrobacterium spp., quorum-sensing regulation was initially identified as a mechanism of regulating plasmid transfer. As the bacterial population density increases, plasmid transfer genes are induced by TraR in response to AHLs made by TraI (55). In several rhizobia, traI-like AHL synthase genes are also in an operon along with plasmid transfer genes (13).There are other quorum-sensing loci in different strains of rhizobia. In Sinorhizobium meliloti strain Rm1021, AHLs produced by SinI activate SinR and ExpR, LuxR-type regulators, to induce several genes, including those determining the production of an exopolysaccharide, exopolysaccharide II (EPS-II) (17, 23, 24, 35), that plays an important role in the symbiosis. In S. meliloti, two LuxR-type regulators, VisN and VisR, are involved in chemotaxis and motility (24, 44). Rhizobium etli has multiple AHL synthase genes (9, 39), but the functions of many of the regulated genes remain to be established. The cinR and cinI genes are required for normal symbiotic nitrogen fixation and swarming in R. etli (5, 9, 11) and for normal levels of expression of raiI, which encodes another AHL synthase. The expression of raiI in R. etli is regulated by RaiR (39).Analysis of AHLs produced by strain A34 of Rhizobium leguminosarum bv. viciae led to the characterization of four LuxI-type AHL synthases (RhiI, CinI, RaiI, and TraI) and five LuxR-type regulators (RhiR, CinR, RaiR, TraR, and BisR) (8, 31, 50, 53). In this strain, the cinI and cinR genes are chromosomally located; CinI produces N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3-OH-C14:1-HSL) (20, 31), CinR induces cinI expression in response to this AHL (31), and this appears to be associated with adaptation to starvation and salt stress (47). Mutation of cinI or cinR affects the expression of the other three AHL synthase genes in R. leguminosarum bv. viciae strain A34. Thus, in a cinI mutant, the expression of raiI is reduced, resulting in very low levels of 3-OH-C8-HSL, the major AHL made by RaiI (53). Similarly, the expression levels of the traI and rhiI genes on the symbiotic plasmid pRL1JI are reduced in cinI and cinR mutants (31). RhiI-made AHLs activate RhiR to induce the expression of the rhiABC operon in R. leguminosarum bv. viciae (38), enhancing the interaction with the legume host (8).The cinI and cinR quorum-sensing genes control induction of the traI and traR quorum-sensing regulons via CinI-made 3-OH-C14:1-HSL, which activates BisR (another LuxR-type regulator) to induce traR and hence traI (12). However, the mechanism by which cinI and/or cinR control raiI and raiR expression has not been established. In this work we demonstrate that raiI and raiR expression requires both expR and a small gene (cinS) cotranscribed with cinI. CinS also regulates the expression of plyB encoding an extracellular glycanase and is required for swarming of R. etli.  相似文献   
12.
The secretory activity of the albumen gland of the freshwater snail Lymnaea stagnalis was studied morphometrically (both at the light- and at the electron-microscope level) and biochemically under the following experimental conditions: (1) glandular tissue was implanted into acceptor snails and the glandular activity of the implants was compared to that of the glands of the donors and acceptors; (2) glandular activity was measured at various periods after oviposition; and (3) the activity was measured during a 24 h cycle (diurnal activity). The results indicate that cellular release of secretion material is regulated by a nervous mechanism, whereas synthetic activity is under hormonal control.  相似文献   
13.
14.
Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3′-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms.  相似文献   
15.
16.
We report here the isolation of the Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (AtSERK1) gene and we demonstrate its role during establishment of somatic embryogenesis in culture. The AtSERK1 gene is highly expressed during embryogenic cell formation in culture and during early embryogenesis. The AtSERK1 gene is first expressed in planta during megasporogenesis in the nucellus [corrected] of developing ovules, in the functional megaspore, and in all cells of the embryo sac up to fertilization. After fertilization, AtSERK1 expression is seen in all cells of the developing embryo until the heart stage. After this stage, AtSERK1 expression is no longer detectable in the embryo or in any part of the developing seed. Low expression is detected in adult vascular tissue. Ectopic expression of the full-length AtSERK1 cDNA under the control of the cauliflower mosaic virus 35S promoter did not result in any altered plant phenotype. However, seedlings that overexpressed the AtSERK1 mRNA exhibited a 3- to 4-fold increase in efficiency for initiation of somatic embryogenesis. Thus, an increased AtSERK1 level is sufficient to confer embryogenic competence in culture.  相似文献   
17.
The adhesion of infected red blood cells (IRBCs) to the cell lining of microvasculature is thought to play a central role in the pathogenesis of severe malaria. Individual IRBC can bind to more than one host receptor and parasites with multiple binding phenotypes may cause severe disease more frequently. However, as most clinical isolates are multiclonal, previous studies were hampered by the difficulty to distinguish whether a multiadherent phenotype was due to one or more parasite population(s). We have developed a tool, based on cytoadhesion assay and GeneScan genotyping technology, which enabled us to assess on fresh isolates the capacity of adherence of individual P. falciparum genotypes to human receptors expressed on CHO transfected cells. The cytoadhesion to ICAM-1 and CD36 of IRBCs from uncomplicated and severe malaria attacks was evaluated using this methodology. In this preliminary series conducted in non immune travelers, IRBCs from severe malaria appeared to adhere more frequently and/or strongly to ICAM-1 and CD36 in comparison with uncomplicated cases. In addition, a majority genotype able to strongly adhere to CD36 was found more frequently in isolates from severe malaria cases. Further investigations are needed to confirm the clinical relevance of these data.  相似文献   
18.
Enterococcus faecium is an opportunistic pathogen responsible for numerous outbreaks worldwide. The basis for the colonization capacities, host persistence and environmental stress response of the hospital-adapted clones emerging from E. faecium are poorly understood. In this study, we propose the use of Galleria mellonella as a simple nonmammalian model to assess E. faecium host persistence. Various strains (n = 10), including hospital-adapted, commensal or animal isolates and a SodA-deficient strain were used to assess the relevance of this model. Compared to Enterococcus faecalis, E. faecium strains do not appear very lethal in a Galleria killing assay. The ability of E. faecium strains to overcome host-immune responses and multiply within the host system was evaluated by monitoring bacterial loads following Galleria infection. Among the E. faecium strains, two hospital-adapted isolates displayed increased colonization ability. In contrast, inactivation of sodA, encoding a putative manganese-dependent superoxide dismutase, significantly reduced survival of E. faecium to Galleria defenses. Galleria appears to be a suitable and convenient surrogate model to study E. faecium survival to host defenses and the role of suspected virulence factors in the colonization process.  相似文献   
19.
The mechanism by which the CXC chemokine platelet factor 4 (PF-4) inhibits endothelial cell proliferation is unclear. The heparin-binding domains of PF-4 have been reported to prevent vascular endothelial growth factor 165 (VEGF(165)) and fibroblast growth factor 2 (FGF2) from interacting with their receptors. However, other studies have suggested that PF-4 acts via heparin-binding independent interactions. Here, we compared the effects of PF-4 on the signalling events involved in the proliferation induced by VEGF(165), which binds heparin, and by VEGF(121), which does not. Activation of the VEGF receptor, KDR, and phospholipase Cgamma (PLCgamma) was unaffected in conditions in which PF-4 inhibited VEGF(121)-induced DNA synthesis. In contrast, VEGF(165)-induced phosphorylation of KDR and PLCgamma was partially inhibited by PF-4. These observations are consistent with PF-4 affecting the binding of VEGF(165), but not that of VEGF(121), to KDR. PF-4 also strongly inhibited the VEGF(165)- and VEGF(121)-induced mitogen-activated protein (MAP) kinase signalling pathways comprising Raf1, MEK1/2 and ERK1/2: for VEGF(165) it interacts directly or upstream from Raf1; for VEGF(121), it acts downstream from PLCgamma. Finally, the mechanism by which PF-4 may inhibit the endothelial cell proliferation induced by both VEGF(121) and VEGF(165), involving disruption of the MAP kinase signalling pathway downstream from KDR did not seem to involve CXCR3B activation.  相似文献   
20.
A novel technique, combining labelling and stereological methods, for the determination of spatial distribution of two microorganisms in a biofilm is presented. Cells of Nitrosomonas europaea (ATCC 19718) and Nitrobacter agilis (ATCC 14123) were homogeneously distributed in a κ-carrageenan gel during immobilization and allowed to grow out to colonies. The gel beads were sliced in thin cross sections after fixation and embedding. A two-step labelling method resulted in green fluorescent colonies of either N. europaea or N. agilis in the respective cross sections. The positions and surface areas of the colonies of each species were determined, and from that a biomass volume distribution for N. europaea and N. agilis in κ-carrageenan gel beads was estimated. This technique will be useful for the validation of biofilm models, which predict such biomass distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号