首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  2024年   1篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   11篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   11篇
  2007年   5篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  1989年   2篇
排序方式: 共有73条查询结果,搜索用时 453 毫秒
51.
Folic acid and folates have an important role in prevention of neural tube defect that appears in the first weeks of pregnancy, when women are still not aware of their pregnancy, especially when pregnancy is not planned. Since ensuring sufficient quantities of folates and folic acid in this period is essential, dietary habits of childbearing age women are very important. In line with that the intake of folates and folic acid in nutrition of women age group 20-30 years is examined, as well as the frequency of consumption of foodstuffs rich in vitamins and folic acid supplements. Values of folates in serum are presented, dependent on their nutritional habits. Obtained results indicate that in spite of inadequate intake of folates and folic acid from foodstuffs, clinical deficit is not recorded, which is the result of frequent consumption of dietary supplements. In accordance with these dietary habits, differences in the folates status of examinees were observed.  相似文献   
52.
Bambuterol is a chiral carbamate known as selective inhibitor of butyrylcholinesterase (BChE). In order to relate bambuterol selectivity and stereoselectivity of cholinesterases to the active site residues, we studied the inhibition of recombinant mouse BChE, acetylcholinesterase (AChE) and six AChE mutants, employed to mimic BChE active site residues, by bambuterol enantiomers. Both enantiomers selectively inhibited BChE about 8000 times faster than AChE. The largest inhibition rate increase in comparison to AChE w.t. was observed with the F295L/Y337A mutant, showing that leucine 295 and alanine 337 are crucial residues in BChE for high bambuterol selectivity. All studied enzymes preferred inhibition by the R- over the S-bambuterol. The enlargement of the AChE choline binding site and of the acyl pocket by single or double mutations (Y337A, F295L/Y337A and F297I/Y337A) increased, in comparison to w.t. enzymes, inhibition rate constants of R- bambuterol more than that of S- bambuterol resulting in four times higher stereoselectivity. Peripheral site mutations (Y124Q and Y72N/Y124Q/Y337A) increased inhibition rate by S- more than R-bambuterol and consequently diminished the stereoselectivity.  相似文献   
53.
Kinetic parameters were evaluated for inhibition of native and reactivation of tabun-inhibited human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7) and human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) by three bispyridinium para-aldoximes with butane (K074), but-2-ene (K075) or xylene-like linker (K114). Tested aldoximes reversibly inhibited both cholinesterases with the preference for binding to the native AChE. Both cholinesterases showed the highest affinity for K114 (K(i) was 0.01mM for AChE and 0.06mM for BChE). The reactivation of tabun-inhibited AChE was efficient by K074 and K075. Their overall reactivation rate constants were around 2000min(-1)M(-1), which is seven times higher than for the classical bispyridinium para-aldoxime TMB-4. The reactivation of tabun-inhibited AChE assisted by K114 was slow and reached 90% after 20h. Since the aldoxime binding affinity of tabun-inhibited AChE was similar for all tested aldoximes (and corresponded to their K(i)), the rate of the nucleophilic displacement of the phosphoryl-moiety from the active site serine was the limiting factor for AChE reactivation. On the other hand, none of the aldoximes displayed a significant reactivation of tabun-inhibited BChE. Even after 20h, the reactivation maximum was 60% for 1mM K074 and K075, and only 20% for 1mM K114. However, lower BChE affinities for K074 and K075 compared to AChE suggest that the fast tabun-inhibited AChE reactivation by these compounds would not be obstructed by their interactions with BChE in vivo.  相似文献   
54.
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.  相似文献   
55.
Deprotection of the fully blocked disacharide allyl O-(2-amino-4,6-O-benzylidene-3-O-[(R)-1-carboxyethyl]-2-deoxy-beta-D-glucopyranosyl-1',2-lactam)-(1-->4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside by selective de-O-allylation and parallel removal of the benzylidene and O-benzyl groups is described. The resulting beta-muramyl lactam-(1-->4)-GlcNAc disaccharide is characterised as the per-O-acetylated derivative by 1H and 13C NMR spectroscopy and X-ray structure analysis. Conformational analysis about glycosidic bond of repeating units of bacterial spore cortex is based on experimental data and molecular modelling.  相似文献   
56.
The protein encoded by the HSD17B7 gene was originally described as a prolactin receptor-associated protein and as 17beta-hydroxysteroid dehydrogenase (HSD) type 7. Its ability to synthesize 17beta-estradiol in vitro has been reported previously. However, we demonstrate that HSD17B7 is the ortholog of the yeast 3-ketosteroid reductase Erg27p and converts zymosterone to zymosterol in vitro, using reduced nicotinamide adenine dinucleotide phosphate as cofactor. Expression of human and murine HSD17B7 in an Erg27p-deficient yeast strain complements the 3-ketosteroid reductase deficiency of the cells and restores growth on sterol-deficient medium. A fusion of HSD17B7 with green fluorescent protein is located in the endoplasmic reticulum, the site of postsqualene cholesterogenesis. Further critical evidence for a role of HSD17B7 in cholesterol metabolism is provided by the observation that its murine ortholog is a member of the same highly distinct embryonic synexpression group as hydroxymethyl-glutaryl-coenzyme A reductase, the rate-limiting enzyme of sterol biogenesis, and is specifically expressed in tissues that are involved in the pathogenesis of congenital cholesterol-deficiency disorders. We conclude that HSD17B7 participates in postsqualene cholesterol biosynthesis, thus completing the molecular cloning of all genes of this central metabolic pathway. In its function as the 3-ketosteroid reductase of cholesterol biosynthesis, HSD17B7 is a novel candidate for inborn errors of cholesterol metabolism.  相似文献   
57.
58.
Sinko G  Calić M  Kovarik Z 《FEBS letters》2006,580(13):3167-3172
In the oximolysis reaction para-aldoximes K027 and TMB-4 react faster with ATCh than ortho-aldoximes HI-6 and K033. The reaction rate constants at 25 degrees C were 22 M(-1) min(-1) for HI-6 and K033, 230 M(-1) min(-1) for TMB-4 and 306 M(-1) min(-1) for K027. Semi-empirical calculations showed that differences in rates do not origin from different electron density on the oxygen of the oxime group, but can be explained by the steric hindrance of the oxime group within the molecule. Thermodynamic parameters, DeltaG#, DeltaH# and DeltaS#, were also determined for oximolysis reaction.  相似文献   
59.
The cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase, are primary targets of organophosphates (OPs). Exposure to OPs can lead to serious cardiovascular complications, respiratory compromise, and death. Current therapy to combat OP poisoning involves an oxime reactivator (2-PAM, obidoxime, TMB4, or HI-6) combined with atropine and on occasion an anticonvulsant. Butyrylcholinesterase, administered in the plasma compartment as a bio-scavenger, has also shown efficacy but is limited by its strict stoichiometric scavenging, slow reactivation, and a propensity for aging. Here, we characterize 10 human (h) AChE mutants that, when coupled with an oxime, give rise to catalytic reactivation and aging resistance of the soman conjugate. With the most efficient human AChE mutant Y337A/F338A, we show enhanced reactivation rates for several OP-hAChE conjugates compared with wild-type hAChE when reactivated with HI-6 (1-(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium)). In addition, we interrogated an 840-member novel oxime library for reactivation of Y337A/F338A hAChE-OP conjugates to delineate the most efficient oxime-mutant enzyme pairs for catalytic bio-scavenging. Combining the increased accessibility of the Y337A mutation to oximes within the space-impacted active center gorge with the aging resistance of the F338A mutation provides increased substrate diversity in scavenging potential for aging-prone alkyl phosphate inhibitors.  相似文献   
60.
A conjugate of pyridine-4-aldoxime and atropine (ATR-4-OX) was synthesized and its antidotal efficiency was tested in vitro on tabun- or paraoxon-inhibited acetylcholinesterase (AChE) of human erythrocytes as well as in vivo using soman-, tabun- or paraoxon-poisoned mice. Its genotoxic profile was assessed on human lymphocytes in vitro and was found acceptable for further research. ATR-4-OX showed very weak antidotal activity, inadequate for soman or tabun poisoning. Conversely, it was effective against paraoxon poisoning both in vitro and in vivo. All animals treated with 5 % or 25 % LD(50) doses of the new oxime survived after administration of 10.0 or 16.0 LD(50) doses of paraoxon, respectively. Based on the persistence of toxicity symptoms in mice, the atropine moiety had questionable effects in attenuating such symptoms. It appears that ATR-4-OX has a therapeutic effect related to the reactivation of phosphylated AChE, but not to receptor antagonization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号