首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   36篇
  2023年   7篇
  2022年   11篇
  2021年   31篇
  2020年   12篇
  2019年   9篇
  2018年   23篇
  2017年   16篇
  2016年   25篇
  2015年   37篇
  2014年   41篇
  2013年   51篇
  2012年   73篇
  2011年   80篇
  2010年   44篇
  2009年   27篇
  2008年   51篇
  2007年   58篇
  2006年   28篇
  2005年   33篇
  2004年   29篇
  2003年   22篇
  2002年   27篇
  2001年   3篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1972年   1篇
  1970年   1篇
  1964年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有768条查询结果,搜索用时 15 毫秒
91.
92.
Simulated body fluid (SBF) is an artificial fluid which has ionic composition and ionic concentration similar to human blood plasma. Purpose: This paper compares the interaction between the nanomaterial containing calcium phosphate/poly-dl-lactide-co-glycolide (N-CP/PLGA) and SBF, in order to investigate whether and to what extent inorganic ionic composition of human blood plasma leads to the aforementioned changes in the material. Methods: N-CP/PLGA was incubated for 1, 2, 3, and 5 weeks in SBF. The surface of the material was analyzed on SEM-EDS and FTIR spectrometer, while SBF was subjected to pH and electrical conductivity measurement. Results: Our results indicate that dissolution of the polymer component of the material N-CP/PLGA and precipitation of the material similar to hydroxyapatite on its surface are based on the morphologic changes seen in this material. Conclusions: The mechanism of the apatite formation on the bioceramic surface was intensively studied and was considered crucial in designing the new biomaterials. The results obtained in this work indicate that N-CP/PLGA may be a good candidate for application to bone regeneration.  相似文献   
93.
94.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   
95.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.  相似文献   
96.
The reaction of the monofunctional [Pt(Gly-Gly-N,N′,O)I] complex, in which Gly-Gly is the dipeptide glycyl-glycine coordinated through two nitrogen and oxygen atoms, with the N-acetylated dipeptide l-methionyl-l-histidine (MeCOMet-His) studied by 1H NMR spectroscopy. All reactions were carried out in 50 mM phosphate buffer at pD 7.4 and at 25 °C. In the initial stage of the reaction, the platinum(II) complex forms the kinetically favored [Pt(Gly-Gly-N,N′,O)(MeCOMet-His-S)] complex, with unidentate coordination of the MeCOMet-His dipeptide through the sulfur atom of the methionine residue. In the second stage of the reaction, complete intramolecular migration of the [Pt(Gly-Gly-N,N′,O)] unit from the sulfur to the N3 nitrogen atom of imidazole was observed and a new platinum(II)-peptide complex, [Pt(Gly-Gly-N,N′,O)(MeCOMet-His-N3)] was formed. In comparison with previous results obtained for the reaction of [Pt(dien)Cl]+ with different methionine- and histidine-containing peptides, this migration reaction was sufficiently fast and strongly selective to the N3 atom of the imidazole ring of the histidine side chain. This study is an important step in the development of new platinum(II) complexes for selective covalent modification of peptides and proteins.  相似文献   
97.
Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.  相似文献   
98.
Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an ∼50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.  相似文献   
99.
The physical properties of membranes derived from the total lipid extract of porcine lenses before and after the addition of cholesterol were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves indicate that the spin labels detect a single homogenous environment in membranes before the addition of cholesterol. After the addition of cholesterol (when cholesterol-to-phospholipid mole to mole ratio of 1.55-1.80 was achieved), two domains were detected by the discrimination by oxygen transport method using a cholesterol analogue spin label. The domains were assigned to a bulk phospholipid-cholesterol bilayer made of the total lipid mixture and to a cholesterol crystalline domain. Because the phospholipid analogue spin labels cannot partition into the pure cholesterol crystalline domain, they monitor properties of the phospholipid-cholesterol domain outside the pure cholesterol crystalline domain. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are identical within experimental error in this domain when measured in the absence and presence of a cholesterol crystalline domain. This indicates that both domains, the phospholipid-cholesterol bilayer and the pure cholesterol crystalline domain, can be treated as independent, weakly interacting membrane regions. The upper limit of the oxygen permeability coefficient across the cholesterol crystalline domain at 35 degrees C had a calculated value of 42.5 cm/s, indicating that the cholesterol crystalline domain can significantly reduce oxygen transport to the lens center. This work was undertaken to better elucidate the major factors that determine membrane resistance to oxygen transport across the lens lipid membrane, with special attention paid to the cholesterol crystalline domain.  相似文献   
100.
Our aim is to determine if there exists a difference in risk factors and diagnosis between patients being treated on internal medicine ward for coronary heart disease who have higher levels of cholesterol in their blood and other patients, without proved higher levels of cholesterol, hospitalized for coronary heart disease. We followed patients hospitalized in General Hospital Zabok for coronary heart disease for the period between 2004-2006y. On admission patients were diagnosed with coronary heart disease based on laboratory markers specific for the disease (CK, troponin, LDH,CRP), ECG and history taking. We analyzed two groups of patients for diagnosis and risk factors on discharge from the hospital: one group with proven hypercholesterolemia, the other with coronary heart disease without hypercholesterolemia. For the duration of the study there were no significant alternations concerning risk factors for coronary heart disease, and hypertension was the most prevalent of these factors in both groups. Values of HDL, as an indirect indicator of coronary heart disease, were lower in both groups for the duration of the study. In group of patients with hypercholesterolemia myocardial infarction with a ST segment elevation, as a discharge diagnosis, was a more prevalent complication of the disease, while for the group of patients without hypercholesterolemia stable angina pectoris was more prevalent and this is explained as atheroma plaque stabilization when there are normal values of blood cholesterol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号