首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   17篇
  2023年   3篇
  2022年   8篇
  2021年   5篇
  2020年   3篇
  2019年   9篇
  2018年   5篇
  2017年   7篇
  2016年   7篇
  2015年   16篇
  2014年   17篇
  2013年   17篇
  2012年   29篇
  2011年   28篇
  2010年   22篇
  2009年   27篇
  2008年   22篇
  2007年   24篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   17篇
  2002年   16篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1981年   1篇
  1978年   2篇
排序方式: 共有359条查询结果,搜索用时 155 毫秒
81.
There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli cell proliferation) associated with in vitro experiments on a Sertoli cell line were developed to investigate this question. We demonstrated that the inhibitory effect of T3 on Sertoli cell growth, analyzed by evaluating DNA-incorporated [3H] thymidine, was associated with a time and dose-dependent increase in the levels of Cx43, a constitutive protein of gap junctions, known to participate in the control of cell proliferation and the most predominant Cx in the testis. These Cx43 changes were associated with increased gap junction communication measured by gap FRAP. Consistent with these results two specific inhibitors of gap junction coupling, AGA and oleamide, were able to significantly reverse the T3 inhibitory effect on Sertoli cell proliferation. The present data also revealed a nongenomic effect of T3 on Cx43 Sertoli cells that was evidenced by a rapid up-regulation of gap junction plaque number as identified in Cx43-GFP transfected cells exposed to the hormone. This process appears mediated through actin cytoskeleton since incubation of the cells with cytochalasin D totally reversed the T3 stimulatory effect on Cx43-GFP gap junction plaques. Based on these data, we propose a working hypothesis in which Cx43 could be an intermediate target for T3 inhibition of neonatal Sertoli cell proliferation.  相似文献   
82.
The expression of imprinted genes is mediated by allele-specific epigenetic modification of genomic DNA and chromatin, including parent of origin-specific DNA methylation. Dysregulation of these genes causes a range of disorders affecting pre- and post-natal growth and neurological function. We investigated a cohort of 12 patients with transient neonatal diabetes whose disease was caused by loss of maternal methylation at the TNDM locus. We found that six of these patients showed a spectrum of methylation loss, mosaic with respect to the extent of the methylation loss, the tissues affected and the genetic loci involved. Five maternally methylated loci were affected, while one maternally methylated and two paternally methylated loci were spared. These patients had higher birth weight and were more phenotypically diverse than other TNDM patients with different aetiologies, presumably reflecting the influence of dysregulation of multiple imprinted genes. We propose the existence of a maternal hypomethylation syndrome, and therefore suggest that any patient with methylation loss at one maternally-methylated locus may also manifest methylation loss at other loci, potentially complicating or even confounding the clinical presentation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
83.
Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons.  相似文献   
84.
Several lines of evidence suggest that aldosterone excess may have detrimental effects in the cardiovascular system, independent of its interaction with the renal epithelial cells. Here we examined the possibility that aldosterone modulates 12‐ and/or 15‐lipoxygenase (LO) expression/activity in human vascular smooth muscle cells (VSMC), in vitro, thereby potentially contributing to both vascular reactivity and atherogenesis. Following 24 h treatment of VSMC with aldosterone (1 nmol/L), there was a ~2‐fold increase in the generation rate of 12 hydroxyeicosatetraenoic acid (12‐HETE), 70% increase in platelet type 12‐LO mRNA expression (P < 0.001) along with a ~3‐fold increase in 12‐LO protein expression, which were blocked by the mineralocorticoid receptor (MR) antagonists spironolactone (100 nmol/L) and eplerelone (100 nmol/ml). Additionally, aldosterone (1 nmol/L; 24 h) increased the production of 15‐HETE (50%; P < 0.001) and the expression of 15‐LO type 2 mRNA (50%; P < 0.05) (in VSMC). Aldosterone also increased the 12‐ and 15‐LO type 2 mRNA expression in a line of human aortic smooth muscle cells (T/G HA‐VSMC) (60% and 50%, respectively). Aldosterone‐induced 12‐ and 15‐LO type 2 mRNA expressions were blocked by the EGF‐receptor antagonist AG 1478 and by the MAPK‐kinase inhibitor UO126. Aldosterone‐treated VSMC also showed increased LDL oxidation, (~2‐fold; P < 0.001), which was blocked by spironolactone. In conclusion, aldosterone increased 12‐ and 15‐LO expression in human VSMC, in association with increased 12‐ and 15‐HETE generation and enhanced LDL oxidation and may directly augment VSMC contractility, hypertrophy, and migration through 12‐HETE and promote LDL oxidation via the pro‐oxidative properties of these enzymes. J. Cell. Biochem. 108: 1203–1210, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
85.
86.
Albumins and globulins of wheat endosperm represent 20% of total kernel protein. They are soluble proteins, mainly enzymes and proteins involved in cell functions. Two-dimensional gel immobiline electrophoresis (2DE) (pH 4-7) × SDS-Page revealed around 2,250 spots. Ninety percent of the spots were common between the very distantly related cultivars ‘Opata 85’ and ‘Synthetic W7984’, the two parents of the International Triticeae Mapping Initiative (ITMI) progeny. ‘Opata’ had 130 specific spots while ‘Synthetic’ had 96. 2DE and image analysis of the soluble proteins present in 112 recombinant inbred lines of the F9-mapped ITMI progeny enabled 120 unbiased segregating spots to be mapped on 21 wheat (Triticum aestivum L. em. Thell) chromosomes. After trypsic digestion, mapped spots were subjected to MALDI-Tof or tandem mass spectrometry for protein identification by database mining. Among the ‘Opata’ and ‘Synthetic’ spots identified, many enzymes have already been mapped in the barley and rice genomes. Multigene families of Heat Shock Proteins, beta-amylases, UDP-glucose pyrophosphorylases, peroxydases and thioredoxins were successfully identified. Although other proteins remain to be identified, some differences were found in the number of segregating proteins involved in response to stress: 11 proteins found in the modern selected cultivar ‘Opata 85’ as compared to 4 in the new hexaploid `Synthetic W7984’. In addition, ‘Opata’ and ‘Synthetic’ differed in the number of proteins involved in protein folding (2 and 10, respectively). The usefulness of the mapped enzymes for future research on seed composition and characteristics is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
87.
This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.Lactic acid bacteria are traditionally used to produce or to preserve various food products such as fermented milks, meats, and vegetables. Their ability to initiate rapid acidification of the raw material is essential to improve the flavor, texture, and safety of these products (11, 14). In order to prevent poor fermentation yields and to improve the quality and reliability of the products, it is important to maintain proper control starter production. This control may be achieved by studying the effects of process parameters on the growth kinetics of the bacteria and on their acidification activity and physiological state in growing conditions. Among all process parameters, pH and harvesting time are key factors that strongly influence the physiological state of lactic acid bacteria after fermentation and stabilization.Lactic acid starters are currently produced using pH-controlled pure cultures (6), during which pH is generally regulated at an optimal value by continuously adding sodium hydroxide or ammonia in the bioreactor (23). Various growth characteristics such as maximal biomass concentration, specific growth rate, fermentation time, sugar consumption or growth, and product yields are significantly influenced by the pH control value (1, 4). Optimal pH ranges were therefore determined for several lactic acid bacteria, such as Streptococcus thermophilus (pH 6.5), Lactobacillus bulgaricus (pH 5.8 to 6) (5, 22), or Lactococcus lactis subsp. cremoris (pH 6.3 to 6.9) (8).Compared to acidic fermentations, pH-controlled cultures led to higher growth yields and productivity (9, 23) as a result of the lower level of nondissociated lactic acid in the culture medium (2, 12, 15). The acidification of the cytoplasm induced by the nondissociated form of the weak organic acid leads to the collapse of the proton motive force (13). This phenomenon inhibits nutrient transport and enzymatic reactions and leads to DNA alteration and biomass inactivation (12). Maintaining the extracellular pH (pHext) at a high value helps the cells stabilize their intracellular pH at a sufficiently high value (9), thus decreasing the inhibiting effect of lactic acid.Fermentation pH also acts on energetic parameters, such as internal pH (pHi), pH gradient (dpH), proton motive force, membrane potential, NADH/NAD ratio, ATP level and rate of ATP formation, and lactate dehydrogenase and ATPase activity (1, 9, 17). During batch cultures of L. lactis performed with or without pH control, Cachon et al. (9) showed that pH control has a significant influence on the variations of pHi, dpH, and NADH/NAD ratio, thus acting on growth parameters. Moreover, in batch cultures, pHi is dependent upon both the external pH and the age of culture. Mercade et al. (17) showed that cultures of L. bulgaricus at controlled pH 6.4 are inhibited at the level of anabolism but were not energy limited. They are characterized by a high maintenance coefficient in contrast to cultures without pH control which consume intracellular energy for pHi regulation.The effect of pH on cellular physiology is confirmed by other studies which show that it influences acidification activity of lactic acid bacteria (23-25). Whereas Wang et al. (25) indicated that Lactobacillus acidophilus cells grown at optimal pH display a higher residual acidification activity than cells grown at lower pH control values, Schepers et al. (24) and Savoie et al. (23) demonstrated that this activity is higher when starters are produced without pH control or at low pH control values. These authors explained that conditions generating high biomass concentrations do not systematically lead to cells with an efficient acidification activity.From this information, the effect of pH control was elucidated on growth and energetic parameters, whereas its effect on the dynamic of cellular physiology, viability, and acidification activity during growth is still not determined.A few authors demonstrated that the harvesting time has a strong impact on cellular parameters such as viability and acidification activity (3, 20, 24). Béal et al. (6) specified that there is an optimal range of time during which to harvest cells in a good physiological state, i.e., at a high cellular concentration and a high acidification activity. However, since this optimal range is strongly strain and condition dependent, more information is needed about the influence of harvesting time on physiological parameters.In order to improve knowledge about the effects of fermentation pH and harvesting time on starter''s quality, we sought here to apply some rapid and relevant methods to characterize the dynamic of L. delbrueckii subsp. bulgaricus CFL1 physiological state throughout pH 6 and pH 5 fermentations. This might allow industrial starter producers to better control their fermentations and to achieve high-quality starters. Among the available methods, the Cinac system and multiparametric flow cytometry, associated with plate counts, made it possible to determine and compare different physiological parameters such as cultivability, acidification activity (Cinac system), membrane damage, enzymatic activity, cell depolarization, intracellular pH, and pH gradient (flow cytometry) (20). Two dynamic schemes of the time course of the physiological state during pH 6 or pH 5 cultures are proposed and discussed.  相似文献   
88.
Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.  相似文献   
89.
The Argentine ant, Linepithema humile (Dolichoderinae), is one of the most widespread invasive ant species in the world. When established in optimal habitat, this species usually excludes most other local ants and can heavily impact other arthropods as well. Although Argentine ants have been present in southern Europe for more than 100 years, they were first noted in Corsica, a French Mediterranean island, in 1957 in only one urban station. In this study, we aimed to map precisely their geographical distribution in Corsica and to quantify their presence by using an infestation index. We recorded changes in the distribution of Argentine ants in Corsica over the past decade. Argentine ants appeared to be well established within their introduced range and spreading along the Corsican coasts principally through Human-mediated jump-dispersal but not homogenously. To cite this article: O. Blight et al., C. R. Biologies 332 (2009).  相似文献   
90.
Paget’s disease of bone (PDB) is one of the most frequent metabolic bone disorders (1–5%), next to osteoporosis, affecting individuals above age 55. Sequestosome1 mutations explain a part of the PDB patients, but still the disease pathogenesis in the remaining PDB patients is largely unknown. Therefore, association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed to find the genetic risk variants. Previously such studies indicated a role of the OPG and RANK gene. The latter was recently confirmed in a genome-wide association study (GWAS) which also indicated the involvement of chromosomal regions harbouring the CSF1 and OPTN gene. In this study, we sought to replicate these findings in a Belgian and a Dutch population. Similar significant results were obtained for the single nucleotide polymorphisms and the haplotypes. The most significant results are found in the CSF1 gene region, followed by the OPTN and TNFRSF11A gene region (p values ranging from 1.3 × 10?4 to 3.8 × 10?8, OR = 1.523–1.858). We next obtained significant association with a polymorphism from the chromosomal region around the TM7SF4 gene (p = 2.7 × 10?3, OR = 1.427), encoding DC-STAMP which did not reach genome-wide significance in the GWAS, but based on its function in osteoclasts it can be considered a strong candidate gene. After meta-analysis with the GWAS data, p values ranged between 2.6 × 10?4 and 8.8 × 10?32. The calculated cumulative population attributable risk of these four loci turned out to be about 67% in our two populations, indicating that most of the genetic risk for PDB is coming from genetic variants close to these four genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号